Loading…
The Role of C/O in Nitrile Astrochemistry in PDRs and Planet-forming Disks
Complex nitriles, such as HC3N, and CH3CN, are observed in a wide variety of astrophysical environments, including at relatively high abundances in photon-dominated regions (PDRs) and the ultraviolet exposed atmospheres of planet-forming disks. The latter have been inferred to be oxygen-poor, sugges...
Saved in:
Published in: | The Astrophysical journal 2019-12, Vol.886 (2), p.86 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Complex nitriles, such as HC3N, and CH3CN, are observed in a wide variety of astrophysical environments, including at relatively high abundances in photon-dominated regions (PDRs) and the ultraviolet exposed atmospheres of planet-forming disks. The latter have been inferred to be oxygen-poor, suggesting that these observations may be explained by organic chemistry in C-rich environments. In this study we first explore if the PDR complex nitrile observations can be explained by gas-phase PDR chemistry alone if the elemental C/O ratio is elevated. In the case of the Horsehead PDR, we find that gas-phase chemistry with C/O 0.9 can indeed explain the observed nitrile abundances, increasing predicted abundances by several orders of magnitude compared to standard C/O assumptions. We also find that the nitrile abundances are sensitive to the cosmic-ray ionization treatment, and provide constraints on the branching ratios between CH3CN and CH3NC productions. In a fiducial disk model, an elevated C/O ratio increases the CH3CN and HC3N productions by more than an order of magnitude, bringing abundance predictions within an order of magnitude to what has been inferred from observations. The C/O ratio appears to be a key variable in predicting and interpreting complex organic molecule abundances in PDRs across a range of scales. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/ab4ad9 |