Loading…
Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations
In this paper, we consider the initial boundary value problem for a mixed pseudo-parabolic Kirchhoff equation. Due to the comparison principle being invalid, we use the potential well method to give a threshold result of global existence and non-existence for the sign-changing weak solutions with in...
Saved in:
Published in: | Electronic research archive 2021-12, Vol.29 (6), p.3833-3851 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we consider the initial boundary value problem for a mixed pseudo-parabolic Kirchhoff equation. Due to the comparison principle being invalid, we use the potential well method to give a threshold result of global existence and non-existence for the sign-changing weak solutions with initial energy $ J(u_0)\leq d $. When the initial energy $ J(u_0)>d $, we find another criterion for the vanishing solution and blow-up solution. Our interest also lies in the discussion of the exponential decay rate of the global solution and life span of the blow-up solution. |
---|---|
ISSN: | 2688-1594 2688-1594 |
DOI: | 10.3934/era.2021064 |