Loading…
Multiple positive solutions for a bi-nonlocal Kirchhoff-Schr$ \ddot{\mathrm{o}} $dinger-Poisson system with critical growth
In this article, we study the following bi-nonlocal Kirchhoff-Schr$ \ddot{\mathrm{o}} $dinger-Poisson system with critical growth: \begin{document}$ \begin{equation*} \begin{cases} -\left( \int_{\Omega}|\nabla u|^2dx\right)^r\Delta u+\phi u = u^5+\lambda\left( \int_{\Omega}F(x, u)dx\right)^sf(x, u...
Saved in:
Published in: | Electronic research archive 2022, Vol.30 (12), p.4493-4506 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, we study the following bi-nonlocal Kirchhoff-Schr$ \ddot{\mathrm{o}} $dinger-Poisson system with critical growth:
\begin{document}$ \begin{equation*} \begin{cases} -\left( \int_{\Omega}|\nabla u|^2dx\right)^r\Delta u+\phi u = u^5+\lambda\left( \int_{\Omega}F(x, u)dx\right)^sf(x, u), & \mathrm{in}\ \ \Omega, \\ -\Delta\phi = u^2, u>0, & \mathrm{in}\ \ \Omega, \\ u = \phi = 0, & \mathrm{on}\ \ \partial\Omega, \end{cases} \end{equation*} $\end{document}
where $ \Omega\subset \mathbb{R}^3 $ is a smooth bounded domain, $ \lambda > 0 $, $ 0\leq r < 1 $, $ 0 < s < \frac{1-r}{3(r+1)} $ and $ f(x, u) $ satisfies some suitable assumptions. By using the concentration compactness principle, the multiplicity of positive solutions for the above system is established. |
---|---|
ISSN: | 2688-1594 2688-1594 |
DOI: | 10.3934/era.2022228 |