Loading…

Cycle integrals of the j-function and mock modular forms

In this paper we construct certain mock modular forms of weight 1/2 whose Fourier coefficients are given in terms of cycle integrals of the modular j-function. Their shadows are weakly holomorphic forms of weight 3/2. These new mock modular forms occur as holomorphic parts of weakly harmonic Maass f...

Full description

Saved in:
Bibliographic Details
Published in:Annals of mathematics 2011-03, Vol.173 (2), p.947-981
Main Authors: Duke, W., Imamoḡlu, Ö., Tóth, Á.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we construct certain mock modular forms of weight 1/2 whose Fourier coefficients are given in terms of cycle integrals of the modular j-function. Their shadows are weakly holomorphic forms of weight 3/2. These new mock modular forms occur as holomorphic parts of weakly harmonic Maass forms. We also construct a generalized mock modular form of weight 1/2 having a real quadratic class number times a regulator as a Fourier coefficient. As an application of these forms we study holomorphic modular integrals of weight 2 whose rational period functions have poles at certain real quadratic integers. The Fourier coefficients of these modular integrals are given in terms of cycle integrals of modular functions. Such a modular integral can be interpreted in terms of a Shimura-type lift of a mock modular form of weight 1/2 and yields a real quadratic analogue of a Borcherds product.
ISSN:0003-486X
1939-8980
DOI:10.4007/annals.2011.173.2.8