Loading…
Blocks of symmetric groups, semicuspidal KLR algebras and zigzag Schur-Weyl duality
We prove Turner's conjecture, which describes the blocks of the Hecke algebras of the symmetric groups up to derived equivalence as certain explicit Turner double algebras. Turner doubles are Schur-algebra-like ‘local’ objects, which replace wreath products of Brauer tree algebras in the contex...
Saved in:
Published in: | Annals of mathematics 2018-09, Vol.188 (2), p.453-512 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove Turner's conjecture, which describes the blocks of the Hecke algebras of the symmetric groups up to derived equivalence as certain explicit Turner double algebras. Turner doubles are Schur-algebra-like ‘local’ objects, which replace wreath products of Brauer tree algebras in the context of the Broué abelian defect group conjecture for blocks of symmetric groups with non-abelian defect groups. The main tools used in the proof are generalized Schur algebras corresponding to wreath products of zigzag algebras and imaginary semicuspidal quotients of affine KLR algebras. |
---|---|
ISSN: | 0003-486X 1939-8980 |
DOI: | 10.4007/annals.2018.188.2.2 |