Loading…
A Least-Loss Algorithm for a Bi-Objective One-Dimensional Cutting-Stock Problem
This article presents a new model and an efficient solution algorithm for a bi-objective one-dimensional cutting-stock problem. In the cutting-stock—or trim-loss—problem, customer orders of different smaller item sizes are satisfied by cutting a number of larger standard-size objects. After cutting...
Saved in:
Published in: | International journal of applied industrial engineering 2019-07, Vol.6 (2), p.1-19 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article presents a new model and an efficient solution algorithm for a bi-objective one-dimensional cutting-stock problem. In the cutting-stock—or trim-loss—problem, customer orders of different smaller item sizes are satisfied by cutting a number of larger standard-size objects. After cutting larger objects to satisfy orders for smaller items, the remaining parts are considered as useless or wasted material, which is called “trim-loss.” The two objectives of the proposed model, in the order of priority, are to minimize the total trim loss, and the number of partially cut large objects. To produce near-optimum solutions, a two-stage least-loss algorithm (LLA) is used to determine the combinations of small item sizes that minimize the trim loss quantity. Solving a real-life industrial problem as well as several benchmark problems from the literature, the algorithm demonstrated considerable effectiveness in terms of both objectives, in addition to high computational efficiency. |
---|---|
ISSN: | 2155-4153 2155-4161 |
DOI: | 10.4018/IJAIE.2019070101 |