Loading…

A Least-Loss Algorithm for a Bi-Objective One-Dimensional Cutting-Stock Problem

This article presents a new model and an efficient solution algorithm for a bi-objective one-dimensional cutting-stock problem. In the cutting-stock—or trim-loss—problem, customer orders of different smaller item sizes are satisfied by cutting a number of larger standard-size objects. After cutting...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied industrial engineering 2019-07, Vol.6 (2), p.1-19
Main Authors: Alfares, Hesham K, Alsawafy, Omar G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article presents a new model and an efficient solution algorithm for a bi-objective one-dimensional cutting-stock problem. In the cutting-stock—or trim-loss—problem, customer orders of different smaller item sizes are satisfied by cutting a number of larger standard-size objects. After cutting larger objects to satisfy orders for smaller items, the remaining parts are considered as useless or wasted material, which is called “trim-loss.” The two objectives of the proposed model, in the order of priority, are to minimize the total trim loss, and the number of partially cut large objects. To produce near-optimum solutions, a two-stage least-loss algorithm (LLA) is used to determine the combinations of small item sizes that minimize the trim loss quantity. Solving a real-life industrial problem as well as several benchmark problems from the literature, the algorithm demonstrated considerable effectiveness in terms of both objectives, in addition to high computational efficiency.
ISSN:2155-4153
2155-4161
DOI:10.4018/IJAIE.2019070101