Loading…
(Citric acid-co-polycaprolactone triol) polyester: A biodegradable elastomer for soft tissue engineering
Tissue engineering holds enormous challenges for materials science, wherein the ideal scaffold to be used is expected to be biocompatible, biodegradable and possess mechanical and physical properties that are suitable for target application. In this context, we have prepared degradable polyesters in...
Saved in:
Published in: | Biomatter (Austin, TX) TX), 2011-07, Vol.1 (1), p.81-90 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-43c037e4140af36842ec512c3e2a630db01e0404639d7e45b9ae553032cc9bb63 |
container_end_page | 90 |
container_issue | 1 |
container_start_page | 81 |
container_title | Biomatter (Austin, TX) |
container_volume | 1 |
creator | Thomas, Lynda V. Nair, Prabha D. |
description | Tissue engineering holds enormous challenges for materials science, wherein the ideal scaffold to be used is expected to be biocompatible, biodegradable and possess mechanical and physical properties that are suitable for target application. In this context, we have prepared degradable polyesters in different ratios by a simple polycondensation technique with citric acid and polycaprolactone triol. Differential scanning calorimetry indicated that the materials were amorphous based the absence of a crystalline melting peak and the presence of a glass transition temperature below 37°C. These polyesters were found to be hydrophilic and could be tailor-made into tubes and films. Porosity could also be introduced by addition of porogens. All the materials were non-cytotoxic in an in vitro cytotoxicity assay and may degrade via hydrolysis to non-toxic degradation products. These polyesters have potential implications in the field of soft tissue engineering on account of their similarity of properties. |
doi_str_mv | 10.4161/biom.1.1.17301 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4161_biom_1_1_17301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23507730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-43c037e4140af36842ec512c3e2a630db01e0404639d7e45b9ae553032cc9bb63</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMotlS3LqVLXUzNc8bZCLX4goqbCu5C5k5GI-lkSEal_96E6qALMXeRkHu-k9yD0BHBM05yclYZt56RVAXDZAeNKRFlRgUTu8OZFiN0GMIrjkvwc0rFPhpRJnARmTEiJwvTewNTBabOwGWdsxtQnXdWQe9aPY1dZ0-n6V6HXvsDtNcoG_Th1z5Bj9dXq8Vttny4uVvMlxmwnPcZZ4BZoTnhWDUsP-dUgyAUmKYqZ7iuMNGYY56zso4yUZVKC8EwowBlVeVsgi62vt1btdY16Lb3ysrOm7XyG-mUkb87rXmRz-5dsjQmL6LBbGsA3oXgdTOwBMuUn0z5SZIq5ReB458vDvLvtKKg2AqsamsdIh7A6Bb0IE2Oqo8pSeV7A1YP1uIfcvUSyXB593A_X6UvPcmubiJXbjnTNs6v1Yfztpa92ljnG69aMEGyP8b5BLh5qAc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>(Citric acid-co-polycaprolactone triol) polyester: A biodegradable elastomer for soft tissue engineering</title><source>Open Access: PubMed Central</source><source>Taylor & Francis Open Access(OpenAccess)</source><creator>Thomas, Lynda V. ; Nair, Prabha D.</creator><creatorcontrib>Thomas, Lynda V. ; Nair, Prabha D.</creatorcontrib><description>Tissue engineering holds enormous challenges for materials science, wherein the ideal scaffold to be used is expected to be biocompatible, biodegradable and possess mechanical and physical properties that are suitable for target application. In this context, we have prepared degradable polyesters in different ratios by a simple polycondensation technique with citric acid and polycaprolactone triol. Differential scanning calorimetry indicated that the materials were amorphous based the absence of a crystalline melting peak and the presence of a glass transition temperature below 37°C. These polyesters were found to be hydrophilic and could be tailor-made into tubes and films. Porosity could also be introduced by addition of porogens. All the materials were non-cytotoxic in an in vitro cytotoxicity assay and may degrade via hydrolysis to non-toxic degradation products. These polyesters have potential implications in the field of soft tissue engineering on account of their similarity of properties.</description><identifier>ISSN: 2159-2527</identifier><identifier>ISSN: 2159-2535</identifier><identifier>EISSN: 2159-2535</identifier><identifier>DOI: 10.4161/biom.1.1.17301</identifier><identifier>PMID: 23507730</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>Absorbable Implants ; Animals ; Arginine - chemistry ; Binding ; Biocompatible Materials - chemistry ; biodegradable ; Biology ; Bioscience ; Calcium ; Calorimetry, Differential Scanning ; Cancer ; Cell ; citric acid ; Citric Acid - chemistry ; Crystallization ; Cycle ; elastomeric ; Elastomers - chemistry ; Fibroblasts - metabolism ; Glass ; Hemolysis ; Human Umbilical Vein Endothelial Cells ; Humans ; Landes ; Materials Testing ; Mice ; Microscopy, Electron, Scanning ; Models, Chemical ; Organogenesis ; Peptides - chemistry ; polycaprolactone triol ; polyester ; Polyesters - chemistry ; Porosity ; Proteins ; soft tissue engineering ; Spectroscopy, Fourier Transform Infrared ; Stress, Mechanical ; Temperature ; Tissue Engineering - instrumentation ; Tissue Engineering - methods</subject><ispartof>Biomatter (Austin, TX), 2011-07, Vol.1 (1), p.81-90</ispartof><rights>Copyright © 2011 Landes Bioscience 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-43c037e4140af36842ec512c3e2a630db01e0404639d7e45b9ae553032cc9bb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548247/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548247/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27502,27924,27925,53791,53793,59143,59144</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23507730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, Lynda V.</creatorcontrib><creatorcontrib>Nair, Prabha D.</creatorcontrib><title>(Citric acid-co-polycaprolactone triol) polyester: A biodegradable elastomer for soft tissue engineering</title><title>Biomatter (Austin, TX)</title><addtitle>Biomatter</addtitle><description>Tissue engineering holds enormous challenges for materials science, wherein the ideal scaffold to be used is expected to be biocompatible, biodegradable and possess mechanical and physical properties that are suitable for target application. In this context, we have prepared degradable polyesters in different ratios by a simple polycondensation technique with citric acid and polycaprolactone triol. Differential scanning calorimetry indicated that the materials were amorphous based the absence of a crystalline melting peak and the presence of a glass transition temperature below 37°C. These polyesters were found to be hydrophilic and could be tailor-made into tubes and films. Porosity could also be introduced by addition of porogens. All the materials were non-cytotoxic in an in vitro cytotoxicity assay and may degrade via hydrolysis to non-toxic degradation products. These polyesters have potential implications in the field of soft tissue engineering on account of their similarity of properties.</description><subject>Absorbable Implants</subject><subject>Animals</subject><subject>Arginine - chemistry</subject><subject>Binding</subject><subject>Biocompatible Materials - chemistry</subject><subject>biodegradable</subject><subject>Biology</subject><subject>Bioscience</subject><subject>Calcium</subject><subject>Calorimetry, Differential Scanning</subject><subject>Cancer</subject><subject>Cell</subject><subject>citric acid</subject><subject>Citric Acid - chemistry</subject><subject>Crystallization</subject><subject>Cycle</subject><subject>elastomeric</subject><subject>Elastomers - chemistry</subject><subject>Fibroblasts - metabolism</subject><subject>Glass</subject><subject>Hemolysis</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Landes</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Microscopy, Electron, Scanning</subject><subject>Models, Chemical</subject><subject>Organogenesis</subject><subject>Peptides - chemistry</subject><subject>polycaprolactone triol</subject><subject>polyester</subject><subject>Polyesters - chemistry</subject><subject>Porosity</subject><subject>Proteins</subject><subject>soft tissue engineering</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Stress, Mechanical</subject><subject>Temperature</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><issn>2159-2527</issn><issn>2159-2535</issn><issn>2159-2535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNqFkEtLAzEUhYMotlS3LqVLXUzNc8bZCLX4goqbCu5C5k5GI-lkSEal_96E6qALMXeRkHu-k9yD0BHBM05yclYZt56RVAXDZAeNKRFlRgUTu8OZFiN0GMIrjkvwc0rFPhpRJnARmTEiJwvTewNTBabOwGWdsxtQnXdWQe9aPY1dZ0-n6V6HXvsDtNcoG_Th1z5Bj9dXq8Vttny4uVvMlxmwnPcZZ4BZoTnhWDUsP-dUgyAUmKYqZ7iuMNGYY56zso4yUZVKC8EwowBlVeVsgi62vt1btdY16Lb3ysrOm7XyG-mUkb87rXmRz-5dsjQmL6LBbGsA3oXgdTOwBMuUn0z5SZIq5ReB458vDvLvtKKg2AqsamsdIh7A6Bb0IE2Oqo8pSeV7A1YP1uIfcvUSyXB593A_X6UvPcmubiJXbjnTNs6v1Yfztpa92ljnG69aMEGyP8b5BLh5qAc</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Thomas, Lynda V.</creator><creator>Nair, Prabha D.</creator><general>Taylor & Francis</general><general>Landes Bioscience</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110701</creationdate><title>(Citric acid-co-polycaprolactone triol) polyester</title><author>Thomas, Lynda V. ; Nair, Prabha D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-43c037e4140af36842ec512c3e2a630db01e0404639d7e45b9ae553032cc9bb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Absorbable Implants</topic><topic>Animals</topic><topic>Arginine - chemistry</topic><topic>Binding</topic><topic>Biocompatible Materials - chemistry</topic><topic>biodegradable</topic><topic>Biology</topic><topic>Bioscience</topic><topic>Calcium</topic><topic>Calorimetry, Differential Scanning</topic><topic>Cancer</topic><topic>Cell</topic><topic>citric acid</topic><topic>Citric Acid - chemistry</topic><topic>Crystallization</topic><topic>Cycle</topic><topic>elastomeric</topic><topic>Elastomers - chemistry</topic><topic>Fibroblasts - metabolism</topic><topic>Glass</topic><topic>Hemolysis</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Landes</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Microscopy, Electron, Scanning</topic><topic>Models, Chemical</topic><topic>Organogenesis</topic><topic>Peptides - chemistry</topic><topic>polycaprolactone triol</topic><topic>polyester</topic><topic>Polyesters - chemistry</topic><topic>Porosity</topic><topic>Proteins</topic><topic>soft tissue engineering</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Stress, Mechanical</topic><topic>Temperature</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Lynda V.</creatorcontrib><creatorcontrib>Nair, Prabha D.</creatorcontrib><collection>Taylor & Francis Open Access(OpenAccess)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomatter (Austin, TX)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Lynda V.</au><au>Nair, Prabha D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>(Citric acid-co-polycaprolactone triol) polyester: A biodegradable elastomer for soft tissue engineering</atitle><jtitle>Biomatter (Austin, TX)</jtitle><addtitle>Biomatter</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>1</volume><issue>1</issue><spage>81</spage><epage>90</epage><pages>81-90</pages><issn>2159-2527</issn><issn>2159-2535</issn><eissn>2159-2535</eissn><abstract>Tissue engineering holds enormous challenges for materials science, wherein the ideal scaffold to be used is expected to be biocompatible, biodegradable and possess mechanical and physical properties that are suitable for target application. In this context, we have prepared degradable polyesters in different ratios by a simple polycondensation technique with citric acid and polycaprolactone triol. Differential scanning calorimetry indicated that the materials were amorphous based the absence of a crystalline melting peak and the presence of a glass transition temperature below 37°C. These polyesters were found to be hydrophilic and could be tailor-made into tubes and films. Porosity could also be introduced by addition of porogens. All the materials were non-cytotoxic in an in vitro cytotoxicity assay and may degrade via hydrolysis to non-toxic degradation products. These polyesters have potential implications in the field of soft tissue engineering on account of their similarity of properties.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>23507730</pmid><doi>10.4161/biom.1.1.17301</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2159-2527 |
ispartof | Biomatter (Austin, TX), 2011-07, Vol.1 (1), p.81-90 |
issn | 2159-2527 2159-2535 2159-2535 |
language | eng |
recordid | cdi_crossref_primary_10_4161_biom_1_1_17301 |
source | Open Access: PubMed Central; Taylor & Francis Open Access(OpenAccess) |
subjects | Absorbable Implants Animals Arginine - chemistry Binding Biocompatible Materials - chemistry biodegradable Biology Bioscience Calcium Calorimetry, Differential Scanning Cancer Cell citric acid Citric Acid - chemistry Crystallization Cycle elastomeric Elastomers - chemistry Fibroblasts - metabolism Glass Hemolysis Human Umbilical Vein Endothelial Cells Humans Landes Materials Testing Mice Microscopy, Electron, Scanning Models, Chemical Organogenesis Peptides - chemistry polycaprolactone triol polyester Polyesters - chemistry Porosity Proteins soft tissue engineering Spectroscopy, Fourier Transform Infrared Stress, Mechanical Temperature Tissue Engineering - instrumentation Tissue Engineering - methods |
title | (Citric acid-co-polycaprolactone triol) polyester: A biodegradable elastomer for soft tissue engineering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=(Citric%20acid-co-polycaprolactone%20triol)%20polyester:%20A%20biodegradable%20elastomer%20for%20soft%20tissue%20engineering&rft.jtitle=Biomatter%20(Austin,%20TX)&rft.au=Thomas,%20Lynda%20V.&rft.date=2011-07-01&rft.volume=1&rft.issue=1&rft.spage=81&rft.epage=90&rft.pages=81-90&rft.issn=2159-2527&rft.eissn=2159-2535&rft_id=info:doi/10.4161/biom.1.1.17301&rft_dat=%3Cpubmed_cross%3E23507730%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-43c037e4140af36842ec512c3e2a630db01e0404639d7e45b9ae553032cc9bb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/23507730&rfr_iscdi=true |