Loading…
Splicing of an intervening sequence by protein-free human snRNAs
Significant structural and mechanistic similarities between the spliceosomal snRNAs and catalytically critical domains of self-splicing group II introns have led to the hypothesis that the spliceosomes and group II introns may be evolutionarily related. We have previously shown that in vitro-transcr...
Saved in:
Published in: | RNA biology 2011-05, Vol.8 (3), p.372-377 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Significant structural and mechanistic similarities between the spliceosomal snRNAs and catalytically critical domains of self-splicing group II introns have led to the hypothesis that the spliceosomes and group II introns may be evolutionarily related. We have previously shown that in vitro-transcribed, protein-free U6 and U2 snRNAs can catalyze a two-step splicing reaction in trans on two short RNA oligonucleotides that is identical to the splicing reactions performed by many self-splicing group II introns. Here we show that the same two snRNAs can perform splicing in cis by removal of an intervening sequence from a model substrate. These results prove that the protein-free snRNAs are competent to perform splicing on pre-mRNAs and further strengthen the possibility of an evolutionary relationship to group II introns. |
---|---|
ISSN: | 1547-6286 1555-8584 |
DOI: | 10.4161/rna.8.3.15386 |