Loading…
Seifert hypersurfaces of 2-knots and Chern–Simons functional
For a given smooth 2-knot in S^4 , we relate the existence of a smooth Seifert hypersurface of a certain class to the existence of irreducible SU(2)-representations of its knot group. For example, we see that any smooth 2-knot having the Poincaré homology 3-sphere as a Seifert hypersurface has at le...
Saved in:
Published in: | Quantum topology 2022-03, Vol.13 (2), p.335-405 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For a given smooth 2-knot in S^4 , we relate the existence of a smooth Seifert hypersurface of a certain class to the existence of irreducible SU(2)-representations of its knot group. For example, we see that any smooth 2-knot having the Poincaré homology 3-sphere as a Seifert hypersurface has at least four irreducible SU(2)-representations of its knot group. This result is false in the topological category. The proof uses a quantitative formulation of instanton Floer homology. Using similar techniques, we also obtain similar results about codimension-1 embeddings of homology 3-spheres into closed definite 4-manifolds and a fixed point type theorem for instanton Floer homology. |
---|---|
ISSN: | 1663-487X 1664-073X |
DOI: | 10.4171/qt/165 |