Loading…
A Hidden Semi-Markov Model for Predicting Production Cycle Time Using Bluetooth Low Energy Data
This study proposes a statistical model to characterize the temporal characteristics of an entire production process. The model utilizes received signal strength indicator (RSSI) data obtained from a Bluetooth low energy (BLE) network. A hidden semi-Markov model (HSMM) is formulated based on the cha...
Saved in:
Published in: | Advances in technology innovation 2023-09, Vol.8 (4), p.241-253 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study proposes a statistical model to characterize the temporal characteristics of an entire production process. The model utilizes received signal strength indicator (RSSI) data obtained from a Bluetooth low energy (BLE) network. A hidden semi-Markov model (HSMM) is formulated based on the characteristics of the production process, and the forward-backward algorithm is employed to re-estimate the probability distribution of state durations. The proposed method is validated through numerical, simulation, and real-world experiments, yielding promising results. The results show that the Kullback-Leibler divergence (KLD) score of 0.1843, while the simulation achieves an average vector distance score of 0.9740. The real-time experiment also shows a reasonable accuracy, with an average HSMM estimated throughput time of 30.48 epochs, compared to the average real throughput time of 33.99 epochs. Overall, the model serves as a valuable tool for predicting the cycle time and throughput time of a production line. |
---|---|
ISSN: | 2415-0436 2518-2994 |
DOI: | 10.46604/aiti.2023.11678 |