Loading…

Comparing representational geometries using whitened unbiased-distance-matrix similarity

Representational similarity analysis (RSA) tests models of brain computation by investigating how neural activity patterns reflect experimental conditions. Instead of predicting activity patterns directly, the models predict the geometry of the representation, as defined by the representational diss...

Full description

Saved in:
Bibliographic Details
Published in:Neurons, behavior, data analysis, and theory behavior, data analysis, and theory, 2021-08, Vol.5 (3)
Main Authors: Diedrichsen, Jörn, Berlot, Eva, Mur, Marieke, Schütt, Heiko H., Shahbazi, Mahdiyar, Kriegeskorte, Nikolaus
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Representational similarity analysis (RSA) tests models of brain computation by investigating how neural activity patterns reflect experimental conditions. Instead of predicting activity patterns directly, the models predict the geometry of the representation, as defined by the representational dissimilarity matrix (RDM), which captures how similar or dissimilar different activity patterns associated by different experimental conditions are. RSA therefore first quantifies the representational geometry by calculating a dissimilarity measure for each pair of conditions, and then compares the estimated representational dissimilarities to those predicted by each model. Here we address two central challenges of RSA: First, dissimilarity measures such as the Euclidean, Mahalanobis, and correlation distance, are biased by measurement noise, which can lead to incorrect inferences. Unbiased dissimilarity estimates can be obtained by crossvalidation, at the price of increased variance. Second, the pairwise dissimilarity estimates are not statistically independent, and ignoring this dependency makes model comparison statistically suboptimal. We present an analytical expression for the mean and (co)variance of both biased and unbiased estimators of the squared Euclidean and Mahalanobis distance, allowing us to quantify the bias-variance trade-off. We also use the analytical expression of the covariance of the dissimilarity estimates to whiten the RDM estimation errors. This results in a new criterion for RDM similarity, the whitened unbiased RDM cosine similarity (WUC), which allows for near-optimal model selection combined with robustness to correlated measurement noise.
ISSN:2690-2664
2690-2664
DOI:10.51628/001c.27664