Loading…

Novel transglucosylating reaction of sucrose phosphorylase to carboxylic compounds

We screened for the carbohydrate-active enzymes that catalyze transglycosylation reactions on carboxylic compounds. Sucrose phosphorylase from Streptococcus mutans showed remarkable transglucosylating activity on benzoic acid, especially under acidic conditions. Sucrose phosphorylase from Leuconosto...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Applied Glycoscience 2008, Vol.55(2), pp.119-125
Main Authors: Sugimoto, K.(Ezaki Glico Co. Ltd., Osaka (Japan). Biochemical Research Lab.), Nomura, K, Nishimura, H, Ohdan, K, Kamasaka, H, Nishimura, T, Hayashi, H, Kuriki, T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We screened for the carbohydrate-active enzymes that catalyze transglycosylation reactions on carboxylic compounds. Sucrose phosphorylase from Streptococcus mutans showed remarkable transglucosylating activity on benzoic acid, especially under acidic conditions. Sucrose phosphorylase from Leuconostoc mesenteroides also showed the activity, although it was very weak. Three main products were detected from the reaction mixture with sucrose, benzoic acid and S. mutans sucrose phosphorylase. These compounds were identified as 1-O-benzoyl alpha-D-glucopyranose, 2-O-benzoyl alpha-D-glucopyranose and 2-O-benzoyl beta-D-glucopyranose on the basis of their isolation and the isolation of their acetylated products and subsequent spectroscopic analyses. Time-course analyses of the enzyme reaction and the degradation of 1-O-benzoyl alpha-D-glucopyranose proved that 1-O-benzoyl alpha-D-glucopyranose was initially produced by the transglucosylation reaction of the enzyme, and 2-O-benzoyl alpha-D-glucopyranose and 2-O-benzoyl beta-D-glucopyranose were produced from 1-O-benzoyl alpha-D-glucopyranose by intramolecular acyl migration reaction. The acceptor specificity in the transglucosylation reaction of S. mutans sucrose phosphorylase was also examined. The enzyme could transglucosylate toward various carboxylic compounds. Comparison of the pH-dependence of transglucosylation activities of the enzyme on phosphate, hydroquinone and acetic acid suggest that an undissociated carboxylic group is essential as the acceptor molecule for the transglucosylation reaction on carboxylic compounds. We also obtained 1-O-acetyl alpha-D-glucopyranose using the transglucosylation reaction of the enzyme. The sensory test of acetic acid and the glucosides revealed that the sour taste of acetic acid was markedly reduced by glucosylation.
ISSN:1344-7882
1880-7291
DOI:10.5458/jag.55.119