Loading…
Sharp norm inequalities for commutators of classical operators
We prove several sharp weighted norm inequalities for commutators of classical operators in harmonic analysis. We found suffcient Ap-bump conditions on pairs of weights (u; v) such that [b; T], b 2 BMO and T a singular integral operator (such as the Hilbert or Riesz transforms), maps Lp(v) into Lp(u...
Saved in:
Published in: | Publicacions matemà tiques 2012, Vol.56 (1), p.147-190 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove several sharp weighted norm inequalities for commutators of classical operators in harmonic analysis. We found suffcient Ap-bump conditions on pairs of weights (u; v) such that [b; T], b 2 BMO and T a singular integral operator (such as the Hilbert or Riesz transforms), maps Lp(v) into Lp(u). Because of the added degree of singularity, the commutators require a \double log bump" as opposed to that of singular integrals, which only require single log bumps. For the fractional integral operator I we nd the sharp one-weight bound on [b; I ], b 2 BMO, in terms of the Ap;q constant of the weight. We also prove sharp two-weight bounds for [b; I ] analogous to those of singular integrals. We prove two-weight weak type inequalities for [b; T] and [b; I ] for pairs of factored weights. Finally we construct several examples showing our bounds are sharp. |
---|---|
ISSN: | 0214-1493 2014-4350 |
DOI: | 10.5565/publmat_56112_06 |