Loading…
Division-ample sets and the Diophantine problem for rings of integers
Nous démontrons que le dixième problème de Hilbert pour un anneau d'entiers dans un corps de nombres K admet une réponse négative si K satisfait à deux conditions arithmétiques (existence d'un ensemble dit division-ample et d'une courbe elliptique de rang un sur K). Nous lions les ens...
Saved in:
Published in: | Journal de theorie des nombres de bordeaux 2005-01, Vol.17 (3), p.727-735 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2286-1694f416e54f28bed18df4fa5d81875b19d42a55e69ada3d9faf0a5b2d69f4263 |
---|---|
cites | |
container_end_page | 735 |
container_issue | 3 |
container_start_page | 727 |
container_title | Journal de theorie des nombres de bordeaux |
container_volume | 17 |
creator | CORNELISSEN, Gunther PHEIDAS, Thanases ZAHIDI, Karim |
description | Nous démontrons que le dixième problème de Hilbert pour un anneau d'entiers dans un corps de nombres K admet une réponse négative si K satisfait à deux conditions arithmétiques (existence d'un ensemble dit division-ample et d'une courbe elliptique de rang un sur K). Nous lions les ensembles division-ample à l'arithmétique des variétés abéliennes. We prove that Hilbert's Tenth Problem for a ring of integers in a number field K has a negative answer if K satisfies two arithmetical conditions (existence of a so-called divisionample set of integers and of an elliptic curve of rank one over K). We relate division-ample sets to arithmetic of abelian varieties. |
doi_str_mv | 10.5802/jtnb.516 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5802_jtnb_516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43974363</jstor_id><sourcerecordid>43974363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2286-1694f416e54f28bed18df4fa5d81875b19d42a55e69ada3d9faf0a5b2d69f4263</originalsourceid><addsrcrecordid>eNpFz0tLAzEUhuEgCtYq-AeEbAQ3U3OfZCltvUDBja6HM5OkTZkmQzII_ntbRnR1FufhgxehW0oWUhP2uB9ju5BUnaEZo1RXWtbsHM0oE6qqBZGX6KqUPSGMK6NnaL0KX6GEFCs4DL3DxY0FQ7R43Dm8CmnYQRxDdHjIqe3dAfuUcQ5xW3DyOMTRbV0u1-jCQ1_cze-do8_n9cfytdq8v7wtnzZVx5hWFVVGeEGVk8Iz3TpLtfXCg7Sa6lq21FjBQEqnDFjg1njwBGTLrDJeMMXn6GHa7XIqJTvfDDkcIH83lDSn_OaU3xzzj_R-ogOUDnqfIXah_PtaEV4bdnR3k9uXMeW_v-CmFlxx_gNy8GSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Division-ample sets and the Diophantine problem for rings of integers</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>CORNELISSEN, Gunther ; PHEIDAS, Thanases ; ZAHIDI, Karim</creator><creatorcontrib>CORNELISSEN, Gunther ; PHEIDAS, Thanases ; ZAHIDI, Karim</creatorcontrib><description>Nous démontrons que le dixième problème de Hilbert pour un anneau d'entiers dans un corps de nombres K admet une réponse négative si K satisfait à deux conditions arithmétiques (existence d'un ensemble dit division-ample et d'une courbe elliptique de rang un sur K). Nous lions les ensembles division-ample à l'arithmétique des variétés abéliennes. We prove that Hilbert's Tenth Problem for a ring of integers in a number field K has a negative answer if K satisfies two arithmetical conditions (existence of a so-called divisionample set of integers and of an elliptic curve of rank one over K). We relate division-ample sets to arithmetic of abelian varieties.</description><identifier>ISSN: 1246-7405</identifier><identifier>EISSN: 2118-8572</identifier><identifier>DOI: 10.5802/jtnb.516</identifier><language>eng</language><publisher>Talence: Institut de mathématiques de Bordeaux</publisher><subject>Algebra ; Algebraic geometry ; Arithmetic ; Computer algebra systems ; Diophantine sets ; Exact sciences and technology ; Geometry ; Integers ; Mathematical relations ; Mathematical rings ; Mathematics ; Number theory ; Numbers ; Sciences and techniques of general use</subject><ispartof>Journal de theorie des nombres de bordeaux, 2005-01, Vol.17 (3), p.727-735</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2286-1694f416e54f28bed18df4fa5d81875b19d42a55e69ada3d9faf0a5b2d69f4263</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43974363$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43974363$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17603792$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CORNELISSEN, Gunther</creatorcontrib><creatorcontrib>PHEIDAS, Thanases</creatorcontrib><creatorcontrib>ZAHIDI, Karim</creatorcontrib><title>Division-ample sets and the Diophantine problem for rings of integers</title><title>Journal de theorie des nombres de bordeaux</title><description>Nous démontrons que le dixième problème de Hilbert pour un anneau d'entiers dans un corps de nombres K admet une réponse négative si K satisfait à deux conditions arithmétiques (existence d'un ensemble dit division-ample et d'une courbe elliptique de rang un sur K). Nous lions les ensembles division-ample à l'arithmétique des variétés abéliennes. We prove that Hilbert's Tenth Problem for a ring of integers in a number field K has a negative answer if K satisfies two arithmetical conditions (existence of a so-called divisionample set of integers and of an elliptic curve of rank one over K). We relate division-ample sets to arithmetic of abelian varieties.</description><subject>Algebra</subject><subject>Algebraic geometry</subject><subject>Arithmetic</subject><subject>Computer algebra systems</subject><subject>Diophantine sets</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Integers</subject><subject>Mathematical relations</subject><subject>Mathematical rings</subject><subject>Mathematics</subject><subject>Number theory</subject><subject>Numbers</subject><subject>Sciences and techniques of general use</subject><issn>1246-7405</issn><issn>2118-8572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFz0tLAzEUhuEgCtYq-AeEbAQ3U3OfZCltvUDBja6HM5OkTZkmQzII_ntbRnR1FufhgxehW0oWUhP2uB9ju5BUnaEZo1RXWtbsHM0oE6qqBZGX6KqUPSGMK6NnaL0KX6GEFCs4DL3DxY0FQ7R43Dm8CmnYQRxDdHjIqe3dAfuUcQ5xW3DyOMTRbV0u1-jCQ1_cze-do8_n9cfytdq8v7wtnzZVx5hWFVVGeEGVk8Iz3TpLtfXCg7Sa6lq21FjBQEqnDFjg1njwBGTLrDJeMMXn6GHa7XIqJTvfDDkcIH83lDSn_OaU3xzzj_R-ogOUDnqfIXah_PtaEV4bdnR3k9uXMeW_v-CmFlxx_gNy8GSk</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>CORNELISSEN, Gunther</creator><creator>PHEIDAS, Thanases</creator><creator>ZAHIDI, Karim</creator><general>Institut de mathématiques de Bordeaux</general><general>Université de Bordeaux 1, laboratoire de mathématiques pures</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050101</creationdate><title>Division-ample sets and the Diophantine problem for rings of integers</title><author>CORNELISSEN, Gunther ; PHEIDAS, Thanases ; ZAHIDI, Karim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2286-1694f416e54f28bed18df4fa5d81875b19d42a55e69ada3d9faf0a5b2d69f4263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algebra</topic><topic>Algebraic geometry</topic><topic>Arithmetic</topic><topic>Computer algebra systems</topic><topic>Diophantine sets</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Integers</topic><topic>Mathematical relations</topic><topic>Mathematical rings</topic><topic>Mathematics</topic><topic>Number theory</topic><topic>Numbers</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CORNELISSEN, Gunther</creatorcontrib><creatorcontrib>PHEIDAS, Thanases</creatorcontrib><creatorcontrib>ZAHIDI, Karim</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal de theorie des nombres de bordeaux</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CORNELISSEN, Gunther</au><au>PHEIDAS, Thanases</au><au>ZAHIDI, Karim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Division-ample sets and the Diophantine problem for rings of integers</atitle><jtitle>Journal de theorie des nombres de bordeaux</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>17</volume><issue>3</issue><spage>727</spage><epage>735</epage><pages>727-735</pages><issn>1246-7405</issn><eissn>2118-8572</eissn><abstract>Nous démontrons que le dixième problème de Hilbert pour un anneau d'entiers dans un corps de nombres K admet une réponse négative si K satisfait à deux conditions arithmétiques (existence d'un ensemble dit division-ample et d'une courbe elliptique de rang un sur K). Nous lions les ensembles division-ample à l'arithmétique des variétés abéliennes. We prove that Hilbert's Tenth Problem for a ring of integers in a number field K has a negative answer if K satisfies two arithmetical conditions (existence of a so-called divisionample set of integers and of an elliptic curve of rank one over K). We relate division-ample sets to arithmetic of abelian varieties.</abstract><cop>Talence</cop><pub>Institut de mathématiques de Bordeaux</pub><doi>10.5802/jtnb.516</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1246-7405 |
ispartof | Journal de theorie des nombres de bordeaux, 2005-01, Vol.17 (3), p.727-735 |
issn | 1246-7405 2118-8572 |
language | eng |
recordid | cdi_crossref_primary_10_5802_jtnb_516 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Algebra Algebraic geometry Arithmetic Computer algebra systems Diophantine sets Exact sciences and technology Geometry Integers Mathematical relations Mathematical rings Mathematics Number theory Numbers Sciences and techniques of general use |
title | Division-ample sets and the Diophantine problem for rings of integers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Division-ample%20sets%20and%20the%20Diophantine%20problem%20for%20rings%20of%20integers&rft.jtitle=Journal%20de%20theorie%20des%20nombres%20de%20bordeaux&rft.au=CORNELISSEN,%20Gunther&rft.date=2005-01-01&rft.volume=17&rft.issue=3&rft.spage=727&rft.epage=735&rft.pages=727-735&rft.issn=1246-7405&rft.eissn=2118-8572&rft_id=info:doi/10.5802/jtnb.516&rft_dat=%3Cjstor_cross%3E43974363%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2286-1694f416e54f28bed18df4fa5d81875b19d42a55e69ada3d9faf0a5b2d69f4263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43974363&rfr_iscdi=true |