Loading…

Division-ample sets and the Diophantine problem for rings of integers

Nous démontrons que le dixième problème de Hilbert pour un anneau d'entiers dans un corps de nombres K admet une réponse négative si K satisfait à deux conditions arithmétiques (existence d'un ensemble dit division-ample et d'une courbe elliptique de rang un sur K). Nous lions les ens...

Full description

Saved in:
Bibliographic Details
Published in:Journal de theorie des nombres de bordeaux 2005-01, Vol.17 (3), p.727-735
Main Authors: CORNELISSEN, Gunther, PHEIDAS, Thanases, ZAHIDI, Karim
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2286-1694f416e54f28bed18df4fa5d81875b19d42a55e69ada3d9faf0a5b2d69f4263
cites
container_end_page 735
container_issue 3
container_start_page 727
container_title Journal de theorie des nombres de bordeaux
container_volume 17
creator CORNELISSEN, Gunther
PHEIDAS, Thanases
ZAHIDI, Karim
description Nous démontrons que le dixième problème de Hilbert pour un anneau d'entiers dans un corps de nombres K admet une réponse négative si K satisfait à deux conditions arithmétiques (existence d'un ensemble dit division-ample et d'une courbe elliptique de rang un sur K). Nous lions les ensembles division-ample à l'arithmétique des variétés abéliennes. We prove that Hilbert's Tenth Problem for a ring of integers in a number field K has a negative answer if K satisfies two arithmetical conditions (existence of a so-called divisionample set of integers and of an elliptic curve of rank one over K). We relate division-ample sets to arithmetic of abelian varieties.
doi_str_mv 10.5802/jtnb.516
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5802_jtnb_516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43974363</jstor_id><sourcerecordid>43974363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2286-1694f416e54f28bed18df4fa5d81875b19d42a55e69ada3d9faf0a5b2d69f4263</originalsourceid><addsrcrecordid>eNpFz0tLAzEUhuEgCtYq-AeEbAQ3U3OfZCltvUDBja6HM5OkTZkmQzII_ntbRnR1FufhgxehW0oWUhP2uB9ju5BUnaEZo1RXWtbsHM0oE6qqBZGX6KqUPSGMK6NnaL0KX6GEFCs4DL3DxY0FQ7R43Dm8CmnYQRxDdHjIqe3dAfuUcQ5xW3DyOMTRbV0u1-jCQ1_cze-do8_n9cfytdq8v7wtnzZVx5hWFVVGeEGVk8Iz3TpLtfXCg7Sa6lq21FjBQEqnDFjg1njwBGTLrDJeMMXn6GHa7XIqJTvfDDkcIH83lDSn_OaU3xzzj_R-ogOUDnqfIXah_PtaEV4bdnR3k9uXMeW_v-CmFlxx_gNy8GSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Division-ample sets and the Diophantine problem for rings of integers</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>CORNELISSEN, Gunther ; PHEIDAS, Thanases ; ZAHIDI, Karim</creator><creatorcontrib>CORNELISSEN, Gunther ; PHEIDAS, Thanases ; ZAHIDI, Karim</creatorcontrib><description>Nous démontrons que le dixième problème de Hilbert pour un anneau d'entiers dans un corps de nombres K admet une réponse négative si K satisfait à deux conditions arithmétiques (existence d'un ensemble dit division-ample et d'une courbe elliptique de rang un sur K). Nous lions les ensembles division-ample à l'arithmétique des variétés abéliennes. We prove that Hilbert's Tenth Problem for a ring of integers in a number field K has a negative answer if K satisfies two arithmetical conditions (existence of a so-called divisionample set of integers and of an elliptic curve of rank one over K). We relate division-ample sets to arithmetic of abelian varieties.</description><identifier>ISSN: 1246-7405</identifier><identifier>EISSN: 2118-8572</identifier><identifier>DOI: 10.5802/jtnb.516</identifier><language>eng</language><publisher>Talence: Institut de mathématiques de Bordeaux</publisher><subject>Algebra ; Algebraic geometry ; Arithmetic ; Computer algebra systems ; Diophantine sets ; Exact sciences and technology ; Geometry ; Integers ; Mathematical relations ; Mathematical rings ; Mathematics ; Number theory ; Numbers ; Sciences and techniques of general use</subject><ispartof>Journal de theorie des nombres de bordeaux, 2005-01, Vol.17 (3), p.727-735</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2286-1694f416e54f28bed18df4fa5d81875b19d42a55e69ada3d9faf0a5b2d69f4263</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43974363$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43974363$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17603792$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CORNELISSEN, Gunther</creatorcontrib><creatorcontrib>PHEIDAS, Thanases</creatorcontrib><creatorcontrib>ZAHIDI, Karim</creatorcontrib><title>Division-ample sets and the Diophantine problem for rings of integers</title><title>Journal de theorie des nombres de bordeaux</title><description>Nous démontrons que le dixième problème de Hilbert pour un anneau d'entiers dans un corps de nombres K admet une réponse négative si K satisfait à deux conditions arithmétiques (existence d'un ensemble dit division-ample et d'une courbe elliptique de rang un sur K). Nous lions les ensembles division-ample à l'arithmétique des variétés abéliennes. We prove that Hilbert's Tenth Problem for a ring of integers in a number field K has a negative answer if K satisfies two arithmetical conditions (existence of a so-called divisionample set of integers and of an elliptic curve of rank one over K). We relate division-ample sets to arithmetic of abelian varieties.</description><subject>Algebra</subject><subject>Algebraic geometry</subject><subject>Arithmetic</subject><subject>Computer algebra systems</subject><subject>Diophantine sets</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Integers</subject><subject>Mathematical relations</subject><subject>Mathematical rings</subject><subject>Mathematics</subject><subject>Number theory</subject><subject>Numbers</subject><subject>Sciences and techniques of general use</subject><issn>1246-7405</issn><issn>2118-8572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFz0tLAzEUhuEgCtYq-AeEbAQ3U3OfZCltvUDBja6HM5OkTZkmQzII_ntbRnR1FufhgxehW0oWUhP2uB9ju5BUnaEZo1RXWtbsHM0oE6qqBZGX6KqUPSGMK6NnaL0KX6GEFCs4DL3DxY0FQ7R43Dm8CmnYQRxDdHjIqe3dAfuUcQ5xW3DyOMTRbV0u1-jCQ1_cze-do8_n9cfytdq8v7wtnzZVx5hWFVVGeEGVk8Iz3TpLtfXCg7Sa6lq21FjBQEqnDFjg1njwBGTLrDJeMMXn6GHa7XIqJTvfDDkcIH83lDSn_OaU3xzzj_R-ogOUDnqfIXah_PtaEV4bdnR3k9uXMeW_v-CmFlxx_gNy8GSk</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>CORNELISSEN, Gunther</creator><creator>PHEIDAS, Thanases</creator><creator>ZAHIDI, Karim</creator><general>Institut de mathématiques de Bordeaux</general><general>Université de Bordeaux 1, laboratoire de mathématiques pures</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050101</creationdate><title>Division-ample sets and the Diophantine problem for rings of integers</title><author>CORNELISSEN, Gunther ; PHEIDAS, Thanases ; ZAHIDI, Karim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2286-1694f416e54f28bed18df4fa5d81875b19d42a55e69ada3d9faf0a5b2d69f4263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algebra</topic><topic>Algebraic geometry</topic><topic>Arithmetic</topic><topic>Computer algebra systems</topic><topic>Diophantine sets</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Integers</topic><topic>Mathematical relations</topic><topic>Mathematical rings</topic><topic>Mathematics</topic><topic>Number theory</topic><topic>Numbers</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CORNELISSEN, Gunther</creatorcontrib><creatorcontrib>PHEIDAS, Thanases</creatorcontrib><creatorcontrib>ZAHIDI, Karim</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal de theorie des nombres de bordeaux</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CORNELISSEN, Gunther</au><au>PHEIDAS, Thanases</au><au>ZAHIDI, Karim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Division-ample sets and the Diophantine problem for rings of integers</atitle><jtitle>Journal de theorie des nombres de bordeaux</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>17</volume><issue>3</issue><spage>727</spage><epage>735</epage><pages>727-735</pages><issn>1246-7405</issn><eissn>2118-8572</eissn><abstract>Nous démontrons que le dixième problème de Hilbert pour un anneau d'entiers dans un corps de nombres K admet une réponse négative si K satisfait à deux conditions arithmétiques (existence d'un ensemble dit division-ample et d'une courbe elliptique de rang un sur K). Nous lions les ensembles division-ample à l'arithmétique des variétés abéliennes. We prove that Hilbert's Tenth Problem for a ring of integers in a number field K has a negative answer if K satisfies two arithmetical conditions (existence of a so-called divisionample set of integers and of an elliptic curve of rank one over K). We relate division-ample sets to arithmetic of abelian varieties.</abstract><cop>Talence</cop><pub>Institut de mathématiques de Bordeaux</pub><doi>10.5802/jtnb.516</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1246-7405
ispartof Journal de theorie des nombres de bordeaux, 2005-01, Vol.17 (3), p.727-735
issn 1246-7405
2118-8572
language eng
recordid cdi_crossref_primary_10_5802_jtnb_516
source JSTOR Archival Journals and Primary Sources Collection
subjects Algebra
Algebraic geometry
Arithmetic
Computer algebra systems
Diophantine sets
Exact sciences and technology
Geometry
Integers
Mathematical relations
Mathematical rings
Mathematics
Number theory
Numbers
Sciences and techniques of general use
title Division-ample sets and the Diophantine problem for rings of integers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Division-ample%20sets%20and%20the%20Diophantine%20problem%20for%20rings%20of%20integers&rft.jtitle=Journal%20de%20theorie%20des%20nombres%20de%20bordeaux&rft.au=CORNELISSEN,%20Gunther&rft.date=2005-01-01&rft.volume=17&rft.issue=3&rft.spage=727&rft.epage=735&rft.pages=727-735&rft.issn=1246-7405&rft.eissn=2118-8572&rft_id=info:doi/10.5802/jtnb.516&rft_dat=%3Cjstor_cross%3E43974363%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2286-1694f416e54f28bed18df4fa5d81875b19d42a55e69ada3d9faf0a5b2d69f4263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43974363&rfr_iscdi=true