Loading…
Aesthetic Discrimination of Graph Layouts
This paper addresses the following basic question: given two layouts of the same graph, which one is more aesthetically pleasing? We propose a neural network-based discriminator model trained on a labeled dataset that decides which of two layouts has a higher aesthetic quality. The feature vectors u...
Saved in:
Published in: | Journal of graph algorithms and applications 2019-09, Vol.23 (3), p.525-552 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper addresses the following basic question: given two layouts of the same graph, which one is more aesthetically pleasing? We propose a neural network-based discriminator model trained on a labeled dataset that decides which of two layouts has a higher aesthetic quality. The feature vectors used as inputs to the model are based on known graph drawing quality metrics, classical statistics, information-theoretical quantities, and two-point statistics inspired by methods of condensed matter physics. The large corpus of layout pairs used for training and testing is constructed using force-directed drawing algorithms and the layouts that naturally stem from the process of graph generation. It is further extended using data augmentation techniques. Our model demonstrates a mean prediction accuracy of $97.58\%$, outperforming discriminators based on stress and on the linear combination of popular quality metrics by a margin of $2$ to $3\%$. The present paper extends our contribution to the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018) and is based on a significantly larger dataset. |
---|---|
ISSN: | 1526-1719 1526-1719 |
DOI: | 10.7155/jgaa.00501 |