Loading…
DC non-thermal atmospheric-pressure plasma jet generated using a syringe needle electrode
Non-thermal plasma jet was generated by applying a dc source voltage between the syringe needle anode with flowing Argon gas and a planar or a hollow copper cathode in an atmospheric-pressure environment. The two operating discharge modes, which were self-pulsing and a continuous discharge mode, the...
Saved in:
Published in: | Japanese Journal of Applied Physics 2016-07, Vol.55 (7S2), p.7-07LB02 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Non-thermal plasma jet was generated by applying a dc source voltage between the syringe needle anode with flowing Argon gas and a planar or a hollow copper cathode in an atmospheric-pressure environment. The two operating discharge modes, which were self-pulsing and a continuous discharge mode, these were mainly controlled by the limitations of the current flowing in the discharge circuit. A ballast resistor was an important factor in affecting the limitations of the operating discharge mode. The gas breakdown was initially generated in the self-pulsing discharge mode at the source voltage of 1.2 kV. This was slightly higher than the breakdown voltage at the experimental condition of 1 lpm of Argon and a 1 mm electrode gap distance. The peak self-pulsing discharge currents were up to 15-20 A with a self-pulsing frequency in the range of 10-20 kHz. The continuous discharge mode could be observed at the higher source voltage with the continuous discharge current within the range of a few milliamperes. |
---|---|
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.7567/JJAP.55.07LB02 |