Loading…

The morphology and properties of melt-mixed polyoxymethylene/monosilanolisobutyl-POSS composites

In this study, the morphology and thermo-mechanical behavior of composites formed by a polyoxymethylene (POM) matrix and monosilanolisobutyl polyhedral oligomeric silsesquioxane (msib-POSS) filler have been studied. The msib-POSS molecules were added to the POM by direct melt blending at loadings be...

Full description

Saved in:
Bibliographic Details
Published in:High Performance Polymers 2011-09, Vol.23 (6), p.457-467
Main Authors: Illescas, Silvia, Sánchez-Soto, Miguel, Milliman, Henry, Schiraldi, David A., Arostegui, Asier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, the morphology and thermo-mechanical behavior of composites formed by a polyoxymethylene (POM) matrix and monosilanolisobutyl polyhedral oligomeric silsesquioxane (msib-POSS) filler have been studied. The msib-POSS molecules were added to the POM by direct melt blending at loadings between 0 and 10 wt.%. Hydrogen bonding interactions were detected between POM and msib-POSS Si-OH groups, increasing their mutual compatibility and leading to nanometer-size dispersion of some msib-POSS molecules. These interactions do not prevent POSS aggregation during blending, but lead to micron-scale msib-POSS domains. The thermal decomposition temperature of the composites remained practically constant under inert and oxidative conditions. The low temperature thermal transition (γ) and glass transition temperature (Tg) of POM were found to move to higher temperatures only when 2.5 wt.% of msib-POSS was added, indicating that POSS is physically linked to the POM chains, restricting their motion under those conditions. Low content (2.5 wt.%) of msib-POSS results in antiplastization, whereas higher levels of POSS lead to a decrease in the storage modulus of the polymer. The relationships among these effects and the morphological characteristics of the systems will be discussed herein.
ISSN:0954-0083
1361-6412
DOI:10.1177/0954008311415301