Loading…

Joint Optimization of Power and Data Transfer in Multiuser MIMO Systems

We present an approach to solve the nonconvex optimization problem that arises when designing the transmit covariance matrices in multiuser multiple-input multiple-output (MIMO) broadcast networks implementing simultaneous wireless information and power transfer (SWIPT). The MIMO SWIPT problem is fo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2017-01, Vol.65 (1), p.212-227
Main Authors: Rubio, Javier, Pascual-Iserte, Antonio, Palomar, Daniel P., Goldsmith, Andrea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present an approach to solve the nonconvex optimization problem that arises when designing the transmit covariance matrices in multiuser multiple-input multiple-output (MIMO) broadcast networks implementing simultaneous wireless information and power transfer (SWIPT). The MIMO SWIPT problem is formulated as a general multiobjective optimization problem, in which data rates and harvested powers are optimized simultaneously. Two different approaches are applied to reformulate the (nonconvex) multiobjective problem. In the first approach, the transmitter can control the specific amount of power to be harvested by power transfer whereas in the second approach the transmitter can only control the proportion of power to be harvested among the different harvesting users. We solve the resulting formulations using the majorization-minimization (MM) approach. The solution obtained from the MM approach is compared to the classical block-diagonalization (BD) strategy, typically used to solve the nonconvex multiuser MIMO network by forcing no interference among users. Simulation results show that the proposed approach improves over the BD approach both the system sum rate and the power harvested by users. Additionally, the computational times needed for convergence of the proposed methods are much lower than the ones required for classical gradient-based approaches.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2016.2614794