Loading…
Antisymmetry of solutions for some weighted elliptic problems
This article concerns the antisymmetry, uniqueness, and monotonicity properties of solutions to some elliptic functionals involving weights and a double well potential. In the one-dimensional case, we introduce the continuous odd rearrangement of an increasing function and we show that it decreases...
Saved in:
Published in: | Communications in partial differential equations 2018-03, Vol.43 (3), p.506-547 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article concerns the antisymmetry, uniqueness, and monotonicity properties of solutions to some elliptic functionals involving weights and a double well potential. In the one-dimensional case, we introduce the continuous odd rearrangement of an increasing function and we show that it decreases the energy functional when the weights satisfy a certain convexity-type hypothesis. This leads to the antisymmetry or oddness of increasing solutions (and not only of minimizers). We also prove a uniqueness result (which leads to antisymmetry) where a convexity-type condition by Berestycki and Nirenberg on the weights is improved to a monotonicity condition. In addition, we provide with a large class of problems where antisymmetry does not hold. Finally, some rather partial extensions in higher dimensions are also given. |
---|---|
ISSN: | 0360-5302 1532-4133 |
DOI: | 10.1080/03605302.2018.1446168 |