Loading…

Antisymmetry of solutions for some weighted elliptic problems

This article concerns the antisymmetry, uniqueness, and monotonicity properties of solutions to some elliptic functionals involving weights and a double well potential. In the one-dimensional case, we introduce the continuous odd rearrangement of an increasing function and we show that it decreases...

Full description

Saved in:
Bibliographic Details
Published in:Communications in partial differential equations 2018-03, Vol.43 (3), p.506-547
Main Authors: Cabré, Xavier, Lucia, Marcello, Sanchón, Manel, Villegas, Salvador
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c318t-5ff2e7b3152edefa0c5c7ec01da8fef401247feb2eb5a9bafcb59f3efe86e4eb3
container_end_page 547
container_issue 3
container_start_page 506
container_title Communications in partial differential equations
container_volume 43
creator Cabré, Xavier
Lucia, Marcello
Sanchón, Manel
Villegas, Salvador
description This article concerns the antisymmetry, uniqueness, and monotonicity properties of solutions to some elliptic functionals involving weights and a double well potential. In the one-dimensional case, we introduce the continuous odd rearrangement of an increasing function and we show that it decreases the energy functional when the weights satisfy a certain convexity-type hypothesis. This leads to the antisymmetry or oddness of increasing solutions (and not only of minimizers). We also prove a uniqueness result (which leads to antisymmetry) where a convexity-type condition by Berestycki and Nirenberg on the weights is improved to a monotonicity condition. In addition, we provide with a large class of problems where antisymmetry does not hold. Finally, some rather partial extensions in higher dimensions are also given.
doi_str_mv 10.1080/03605302.2018.1446168
format article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_341357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2040673042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-5ff2e7b3152edefa0c5c7ec01da8fef401247feb2eb5a9bafcb59f3efe86e4eb3</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWKt_grDgeevka3d78FCKX1DwoueQTSeastvUJIvsf2-WVjwMw8DvPd48Qm4pLCg0cA-8AsmBLRjQZkGFqGjVnJEZlZyVgnJ-TmYTU07QJbmKcQeZZEsxIw-rfXJx7HtMYSy8LaLvhuT8PhbWh3z1WPyg-_xKuC2w69whOVMcgm877OM1ubC6i3hz2nPy8fT4vn4pN2_Pr-vVpjScNqmU1jKsW04lwy1aDUaaGg3QrW4sWgGUidpiy7CVetlqa1q5tBwtNhUKbPmc0KOviYNRAQ0Go5Py2v0f0zComeL5ZVlnzd1Rk8N-DxiT2vkh7HPMjAmoag6CZUqenIOPMaBVh-B6HUZFQU3tqr921dSuOrXLfwEx8W5j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040673042</pqid></control><display><type>article</type><title>Antisymmetry of solutions for some weighted elliptic problems</title><source>Taylor and Francis Science and Technology Collection</source><creator>Cabré, Xavier ; Lucia, Marcello ; Sanchón, Manel ; Villegas, Salvador</creator><creatorcontrib>Cabré, Xavier ; Lucia, Marcello ; Sanchón, Manel ; Villegas, Salvador</creatorcontrib><description>This article concerns the antisymmetry, uniqueness, and monotonicity properties of solutions to some elliptic functionals involving weights and a double well potential. In the one-dimensional case, we introduce the continuous odd rearrangement of an increasing function and we show that it decreases the energy functional when the weights satisfy a certain convexity-type hypothesis. This leads to the antisymmetry or oddness of increasing solutions (and not only of minimizers). We also prove a uniqueness result (which leads to antisymmetry) where a convexity-type condition by Berestycki and Nirenberg on the weights is improved to a monotonicity condition. In addition, we provide with a large class of problems where antisymmetry does not hold. Finally, some rather partial extensions in higher dimensions are also given.</description><identifier>ISSN: 0360-5302</identifier><identifier>EISSN: 1532-4133</identifier><identifier>DOI: 10.1080/03605302.2018.1446168</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis Ltd</publisher><subject>35 Partial differential equations ; 35B Qualitative properties of solutions ; 35J Partial differential equations of elliptic type ; 35Q Equations of mathematical physics and other areas of application ; Antisymmetric solutions ; Antisymmetry ; bistable nonlinearity ; Classificació AMS ; continuous odd rearrangement ; Convexity ; Differential equations, Partial ; Equacions diferencials parcials ; Functionals ; Matemàtiques i estadística ; monotonicity ; Uniqueness ; weights ; Àrees temàtiques de la UPC</subject><ispartof>Communications in partial differential equations, 2018-03, Vol.43 (3), p.506-547</ispartof><rights>2018 Taylor &amp; Francis</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-5ff2e7b3152edefa0c5c7ec01da8fef401247feb2eb5a9bafcb59f3efe86e4eb3</cites><orcidid>0000-0002-3308-6360 ; 0000-0002-2126-9565 ; 0000-0001-5682-3135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids></links><search><creatorcontrib>Cabré, Xavier</creatorcontrib><creatorcontrib>Lucia, Marcello</creatorcontrib><creatorcontrib>Sanchón, Manel</creatorcontrib><creatorcontrib>Villegas, Salvador</creatorcontrib><title>Antisymmetry of solutions for some weighted elliptic problems</title><title>Communications in partial differential equations</title><description>This article concerns the antisymmetry, uniqueness, and monotonicity properties of solutions to some elliptic functionals involving weights and a double well potential. In the one-dimensional case, we introduce the continuous odd rearrangement of an increasing function and we show that it decreases the energy functional when the weights satisfy a certain convexity-type hypothesis. This leads to the antisymmetry or oddness of increasing solutions (and not only of minimizers). We also prove a uniqueness result (which leads to antisymmetry) where a convexity-type condition by Berestycki and Nirenberg on the weights is improved to a monotonicity condition. In addition, we provide with a large class of problems where antisymmetry does not hold. Finally, some rather partial extensions in higher dimensions are also given.</description><subject>35 Partial differential equations</subject><subject>35B Qualitative properties of solutions</subject><subject>35J Partial differential equations of elliptic type</subject><subject>35Q Equations of mathematical physics and other areas of application</subject><subject>Antisymmetric solutions</subject><subject>Antisymmetry</subject><subject>bistable nonlinearity</subject><subject>Classificació AMS</subject><subject>continuous odd rearrangement</subject><subject>Convexity</subject><subject>Differential equations, Partial</subject><subject>Equacions diferencials parcials</subject><subject>Functionals</subject><subject>Matemàtiques i estadística</subject><subject>monotonicity</subject><subject>Uniqueness</subject><subject>weights</subject><subject>Àrees temàtiques de la UPC</subject><issn>0360-5302</issn><issn>1532-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEQxYMoWKt_grDgeevka3d78FCKX1DwoueQTSeastvUJIvsf2-WVjwMw8DvPd48Qm4pLCg0cA-8AsmBLRjQZkGFqGjVnJEZlZyVgnJ-TmYTU07QJbmKcQeZZEsxIw-rfXJx7HtMYSy8LaLvhuT8PhbWh3z1WPyg-_xKuC2w69whOVMcgm877OM1ubC6i3hz2nPy8fT4vn4pN2_Pr-vVpjScNqmU1jKsW04lwy1aDUaaGg3QrW4sWgGUidpiy7CVetlqa1q5tBwtNhUKbPmc0KOviYNRAQ0Go5Py2v0f0zComeL5ZVlnzd1Rk8N-DxiT2vkh7HPMjAmoag6CZUqenIOPMaBVh-B6HUZFQU3tqr921dSuOrXLfwEx8W5j</recordid><startdate>20180304</startdate><enddate>20180304</enddate><creator>Cabré, Xavier</creator><creator>Lucia, Marcello</creator><creator>Sanchón, Manel</creator><creator>Villegas, Salvador</creator><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0002-3308-6360</orcidid><orcidid>https://orcid.org/0000-0002-2126-9565</orcidid><orcidid>https://orcid.org/0000-0001-5682-3135</orcidid></search><sort><creationdate>20180304</creationdate><title>Antisymmetry of solutions for some weighted elliptic problems</title><author>Cabré, Xavier ; Lucia, Marcello ; Sanchón, Manel ; Villegas, Salvador</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-5ff2e7b3152edefa0c5c7ec01da8fef401247feb2eb5a9bafcb59f3efe86e4eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>35 Partial differential equations</topic><topic>35B Qualitative properties of solutions</topic><topic>35J Partial differential equations of elliptic type</topic><topic>35Q Equations of mathematical physics and other areas of application</topic><topic>Antisymmetric solutions</topic><topic>Antisymmetry</topic><topic>bistable nonlinearity</topic><topic>Classificació AMS</topic><topic>continuous odd rearrangement</topic><topic>Convexity</topic><topic>Differential equations, Partial</topic><topic>Equacions diferencials parcials</topic><topic>Functionals</topic><topic>Matemàtiques i estadística</topic><topic>monotonicity</topic><topic>Uniqueness</topic><topic>weights</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabré, Xavier</creatorcontrib><creatorcontrib>Lucia, Marcello</creatorcontrib><creatorcontrib>Sanchón, Manel</creatorcontrib><creatorcontrib>Villegas, Salvador</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Recercat</collection><jtitle>Communications in partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabré, Xavier</au><au>Lucia, Marcello</au><au>Sanchón, Manel</au><au>Villegas, Salvador</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antisymmetry of solutions for some weighted elliptic problems</atitle><jtitle>Communications in partial differential equations</jtitle><date>2018-03-04</date><risdate>2018</risdate><volume>43</volume><issue>3</issue><spage>506</spage><epage>547</epage><pages>506-547</pages><issn>0360-5302</issn><eissn>1532-4133</eissn><abstract>This article concerns the antisymmetry, uniqueness, and monotonicity properties of solutions to some elliptic functionals involving weights and a double well potential. In the one-dimensional case, we introduce the continuous odd rearrangement of an increasing function and we show that it decreases the energy functional when the weights satisfy a certain convexity-type hypothesis. This leads to the antisymmetry or oddness of increasing solutions (and not only of minimizers). We also prove a uniqueness result (which leads to antisymmetry) where a convexity-type condition by Berestycki and Nirenberg on the weights is improved to a monotonicity condition. In addition, we provide with a large class of problems where antisymmetry does not hold. Finally, some rather partial extensions in higher dimensions are also given.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis Ltd</pub><doi>10.1080/03605302.2018.1446168</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0002-3308-6360</orcidid><orcidid>https://orcid.org/0000-0002-2126-9565</orcidid><orcidid>https://orcid.org/0000-0001-5682-3135</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-5302
ispartof Communications in partial differential equations, 2018-03, Vol.43 (3), p.506-547
issn 0360-5302
1532-4133
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_341357
source Taylor and Francis Science and Technology Collection
subjects 35 Partial differential equations
35B Qualitative properties of solutions
35J Partial differential equations of elliptic type
35Q Equations of mathematical physics and other areas of application
Antisymmetric solutions
Antisymmetry
bistable nonlinearity
Classificació AMS
continuous odd rearrangement
Convexity
Differential equations, Partial
Equacions diferencials parcials
Functionals
Matemàtiques i estadística
monotonicity
Uniqueness
weights
Àrees temàtiques de la UPC
title Antisymmetry of solutions for some weighted elliptic problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A23%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antisymmetry%20of%20solutions%20for%20some%20weighted%20elliptic%20problems&rft.jtitle=Communications%20in%20partial%20differential%20equations&rft.au=Cabr%C3%A9,%20Xavier&rft.date=2018-03-04&rft.volume=43&rft.issue=3&rft.spage=506&rft.epage=547&rft.pages=506-547&rft.issn=0360-5302&rft.eissn=1532-4133&rft_id=info:doi/10.1080/03605302.2018.1446168&rft_dat=%3Cproquest_csuc_%3E2040673042%3C/proquest_csuc_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-5ff2e7b3152edefa0c5c7ec01da8fef401247feb2eb5a9bafcb59f3efe86e4eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2040673042&rft_id=info:pmid/&rfr_iscdi=true