Loading…
Antisymmetry of solutions for some weighted elliptic problems
This article concerns the antisymmetry, uniqueness, and monotonicity properties of solutions to some elliptic functionals involving weights and a double well potential. In the one-dimensional case, we introduce the continuous odd rearrangement of an increasing function and we show that it decreases...
Saved in:
Published in: | Communications in partial differential equations 2018-03, Vol.43 (3), p.506-547 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c318t-5ff2e7b3152edefa0c5c7ec01da8fef401247feb2eb5a9bafcb59f3efe86e4eb3 |
container_end_page | 547 |
container_issue | 3 |
container_start_page | 506 |
container_title | Communications in partial differential equations |
container_volume | 43 |
creator | Cabré, Xavier Lucia, Marcello Sanchón, Manel Villegas, Salvador |
description | This article concerns the antisymmetry, uniqueness, and monotonicity properties of solutions to some elliptic functionals involving weights and a double well potential. In the one-dimensional case, we introduce the continuous odd rearrangement of an increasing function and we show that it decreases the energy functional when the weights satisfy a certain convexity-type hypothesis. This leads to the antisymmetry or oddness of increasing solutions (and not only of minimizers). We also prove a uniqueness result (which leads to antisymmetry) where a convexity-type condition by Berestycki and Nirenberg on the weights is improved to a monotonicity condition. In addition, we provide with a large class of problems where antisymmetry does not hold. Finally, some rather partial extensions in higher dimensions are also given. |
doi_str_mv | 10.1080/03605302.2018.1446168 |
format | article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_341357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2040673042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-5ff2e7b3152edefa0c5c7ec01da8fef401247feb2eb5a9bafcb59f3efe86e4eb3</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWKt_grDgeevka3d78FCKX1DwoueQTSeastvUJIvsf2-WVjwMw8DvPd48Qm4pLCg0cA-8AsmBLRjQZkGFqGjVnJEZlZyVgnJ-TmYTU07QJbmKcQeZZEsxIw-rfXJx7HtMYSy8LaLvhuT8PhbWh3z1WPyg-_xKuC2w69whOVMcgm877OM1ubC6i3hz2nPy8fT4vn4pN2_Pr-vVpjScNqmU1jKsW04lwy1aDUaaGg3QrW4sWgGUidpiy7CVetlqa1q5tBwtNhUKbPmc0KOviYNRAQ0Go5Py2v0f0zComeL5ZVlnzd1Rk8N-DxiT2vkh7HPMjAmoag6CZUqenIOPMaBVh-B6HUZFQU3tqr921dSuOrXLfwEx8W5j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040673042</pqid></control><display><type>article</type><title>Antisymmetry of solutions for some weighted elliptic problems</title><source>Taylor and Francis Science and Technology Collection</source><creator>Cabré, Xavier ; Lucia, Marcello ; Sanchón, Manel ; Villegas, Salvador</creator><creatorcontrib>Cabré, Xavier ; Lucia, Marcello ; Sanchón, Manel ; Villegas, Salvador</creatorcontrib><description>This article concerns the antisymmetry, uniqueness, and monotonicity properties of solutions to some elliptic functionals involving weights and a double well potential. In the one-dimensional case, we introduce the continuous odd rearrangement of an increasing function and we show that it decreases the energy functional when the weights satisfy a certain convexity-type hypothesis. This leads to the antisymmetry or oddness of increasing solutions (and not only of minimizers). We also prove a uniqueness result (which leads to antisymmetry) where a convexity-type condition by Berestycki and Nirenberg on the weights is improved to a monotonicity condition. In addition, we provide with a large class of problems where antisymmetry does not hold. Finally, some rather partial extensions in higher dimensions are also given.</description><identifier>ISSN: 0360-5302</identifier><identifier>EISSN: 1532-4133</identifier><identifier>DOI: 10.1080/03605302.2018.1446168</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis Ltd</publisher><subject>35 Partial differential equations ; 35B Qualitative properties of solutions ; 35J Partial differential equations of elliptic type ; 35Q Equations of mathematical physics and other areas of application ; Antisymmetric solutions ; Antisymmetry ; bistable nonlinearity ; Classificació AMS ; continuous odd rearrangement ; Convexity ; Differential equations, Partial ; Equacions diferencials parcials ; Functionals ; Matemàtiques i estadística ; monotonicity ; Uniqueness ; weights ; Àrees temàtiques de la UPC</subject><ispartof>Communications in partial differential equations, 2018-03, Vol.43 (3), p.506-547</ispartof><rights>2018 Taylor & Francis</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-5ff2e7b3152edefa0c5c7ec01da8fef401247feb2eb5a9bafcb59f3efe86e4eb3</cites><orcidid>0000-0002-3308-6360 ; 0000-0002-2126-9565 ; 0000-0001-5682-3135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids></links><search><creatorcontrib>Cabré, Xavier</creatorcontrib><creatorcontrib>Lucia, Marcello</creatorcontrib><creatorcontrib>Sanchón, Manel</creatorcontrib><creatorcontrib>Villegas, Salvador</creatorcontrib><title>Antisymmetry of solutions for some weighted elliptic problems</title><title>Communications in partial differential equations</title><description>This article concerns the antisymmetry, uniqueness, and monotonicity properties of solutions to some elliptic functionals involving weights and a double well potential. In the one-dimensional case, we introduce the continuous odd rearrangement of an increasing function and we show that it decreases the energy functional when the weights satisfy a certain convexity-type hypothesis. This leads to the antisymmetry or oddness of increasing solutions (and not only of minimizers). We also prove a uniqueness result (which leads to antisymmetry) where a convexity-type condition by Berestycki and Nirenberg on the weights is improved to a monotonicity condition. In addition, we provide with a large class of problems where antisymmetry does not hold. Finally, some rather partial extensions in higher dimensions are also given.</description><subject>35 Partial differential equations</subject><subject>35B Qualitative properties of solutions</subject><subject>35J Partial differential equations of elliptic type</subject><subject>35Q Equations of mathematical physics and other areas of application</subject><subject>Antisymmetric solutions</subject><subject>Antisymmetry</subject><subject>bistable nonlinearity</subject><subject>Classificació AMS</subject><subject>continuous odd rearrangement</subject><subject>Convexity</subject><subject>Differential equations, Partial</subject><subject>Equacions diferencials parcials</subject><subject>Functionals</subject><subject>Matemàtiques i estadística</subject><subject>monotonicity</subject><subject>Uniqueness</subject><subject>weights</subject><subject>Àrees temàtiques de la UPC</subject><issn>0360-5302</issn><issn>1532-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEQxYMoWKt_grDgeevka3d78FCKX1DwoueQTSeastvUJIvsf2-WVjwMw8DvPd48Qm4pLCg0cA-8AsmBLRjQZkGFqGjVnJEZlZyVgnJ-TmYTU07QJbmKcQeZZEsxIw-rfXJx7HtMYSy8LaLvhuT8PhbWh3z1WPyg-_xKuC2w69whOVMcgm877OM1ubC6i3hz2nPy8fT4vn4pN2_Pr-vVpjScNqmU1jKsW04lwy1aDUaaGg3QrW4sWgGUidpiy7CVetlqa1q5tBwtNhUKbPmc0KOviYNRAQ0Go5Py2v0f0zComeL5ZVlnzd1Rk8N-DxiT2vkh7HPMjAmoag6CZUqenIOPMaBVh-B6HUZFQU3tqr921dSuOrXLfwEx8W5j</recordid><startdate>20180304</startdate><enddate>20180304</enddate><creator>Cabré, Xavier</creator><creator>Lucia, Marcello</creator><creator>Sanchón, Manel</creator><creator>Villegas, Salvador</creator><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0002-3308-6360</orcidid><orcidid>https://orcid.org/0000-0002-2126-9565</orcidid><orcidid>https://orcid.org/0000-0001-5682-3135</orcidid></search><sort><creationdate>20180304</creationdate><title>Antisymmetry of solutions for some weighted elliptic problems</title><author>Cabré, Xavier ; Lucia, Marcello ; Sanchón, Manel ; Villegas, Salvador</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-5ff2e7b3152edefa0c5c7ec01da8fef401247feb2eb5a9bafcb59f3efe86e4eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>35 Partial differential equations</topic><topic>35B Qualitative properties of solutions</topic><topic>35J Partial differential equations of elliptic type</topic><topic>35Q Equations of mathematical physics and other areas of application</topic><topic>Antisymmetric solutions</topic><topic>Antisymmetry</topic><topic>bistable nonlinearity</topic><topic>Classificació AMS</topic><topic>continuous odd rearrangement</topic><topic>Convexity</topic><topic>Differential equations, Partial</topic><topic>Equacions diferencials parcials</topic><topic>Functionals</topic><topic>Matemàtiques i estadística</topic><topic>monotonicity</topic><topic>Uniqueness</topic><topic>weights</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabré, Xavier</creatorcontrib><creatorcontrib>Lucia, Marcello</creatorcontrib><creatorcontrib>Sanchón, Manel</creatorcontrib><creatorcontrib>Villegas, Salvador</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Recercat</collection><jtitle>Communications in partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabré, Xavier</au><au>Lucia, Marcello</au><au>Sanchón, Manel</au><au>Villegas, Salvador</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antisymmetry of solutions for some weighted elliptic problems</atitle><jtitle>Communications in partial differential equations</jtitle><date>2018-03-04</date><risdate>2018</risdate><volume>43</volume><issue>3</issue><spage>506</spage><epage>547</epage><pages>506-547</pages><issn>0360-5302</issn><eissn>1532-4133</eissn><abstract>This article concerns the antisymmetry, uniqueness, and monotonicity properties of solutions to some elliptic functionals involving weights and a double well potential. In the one-dimensional case, we introduce the continuous odd rearrangement of an increasing function and we show that it decreases the energy functional when the weights satisfy a certain convexity-type hypothesis. This leads to the antisymmetry or oddness of increasing solutions (and not only of minimizers). We also prove a uniqueness result (which leads to antisymmetry) where a convexity-type condition by Berestycki and Nirenberg on the weights is improved to a monotonicity condition. In addition, we provide with a large class of problems where antisymmetry does not hold. Finally, some rather partial extensions in higher dimensions are also given.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis Ltd</pub><doi>10.1080/03605302.2018.1446168</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0002-3308-6360</orcidid><orcidid>https://orcid.org/0000-0002-2126-9565</orcidid><orcidid>https://orcid.org/0000-0001-5682-3135</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5302 |
ispartof | Communications in partial differential equations, 2018-03, Vol.43 (3), p.506-547 |
issn | 0360-5302 1532-4133 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_341357 |
source | Taylor and Francis Science and Technology Collection |
subjects | 35 Partial differential equations 35B Qualitative properties of solutions 35J Partial differential equations of elliptic type 35Q Equations of mathematical physics and other areas of application Antisymmetric solutions Antisymmetry bistable nonlinearity Classificació AMS continuous odd rearrangement Convexity Differential equations, Partial Equacions diferencials parcials Functionals Matemàtiques i estadística monotonicity Uniqueness weights Àrees temàtiques de la UPC |
title | Antisymmetry of solutions for some weighted elliptic problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A23%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antisymmetry%20of%20solutions%20for%20some%20weighted%20elliptic%20problems&rft.jtitle=Communications%20in%20partial%20differential%20equations&rft.au=Cabr%C3%A9,%20Xavier&rft.date=2018-03-04&rft.volume=43&rft.issue=3&rft.spage=506&rft.epage=547&rft.pages=506-547&rft.issn=0360-5302&rft.eissn=1532-4133&rft_id=info:doi/10.1080/03605302.2018.1446168&rft_dat=%3Cproquest_csuc_%3E2040673042%3C/proquest_csuc_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-5ff2e7b3152edefa0c5c7ec01da8fef401247feb2eb5a9bafcb59f3efe86e4eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2040673042&rft_id=info:pmid/&rfr_iscdi=true |