Loading…
On the Randić index of graphs
For a given graph G = (V, E), the degree mean rate of an edge uv ¿ E is a half of the quotient between the geometric and arithmetic means of its end-vertex degrees d(u) and d(v). In this note, we derive tight bounds for the Randic index of G in terms of its maximum and minimum degree mean rates over...
Saved in:
Published in: | Discrete mathematics 2019-10, Vol.342 (10), p.2792-2796 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For a given graph G = (V, E), the degree mean rate of an edge uv ¿ E is a half of the quotient between the geometric and arithmetic means of its end-vertex degrees d(u) and d(v). In this note, we derive tight bounds for the Randic index of G in terms of its maximum and minimum degree mean rates over its edges. As a consequence, we prove the known conjecture that the average distance is bounded above by the Randic index for graphs with
order n large enough, when the minimum degree d is greater than (approximately) ¿1/3 , where ¿ is the maximum degree. As a by-product, this proves that almost all random (Erdos–Rényi) graphs satisfy the conjecture
Peer Reviewed |
---|---|
ISSN: | 0012-365X |
DOI: | 10.1016/j.disc.2018.08.020 |