Loading…
On the k-independence number of graphs
This paper generalizes and unifies the existing spectral bounds on the k-independence number of a graph, which is the maximum size of a set of vertices at pairwise distance greater than k. The previous bounds known in the literature follow as a corollary of the main results in this work. We show tha...
Saved in:
Published in: | Discrete mathematics 2019-10, Vol.342 (10), p.2875-2885 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper generalizes and unifies the existing spectral bounds on the k-independence number of a graph, which is the maximum size of a set of vertices at pairwise distance greater than k. The previous bounds known in the literature follow as a corollary of the main results in this work. We show that for most cases our bounds outperform the previous known bounds. Some infinite families of graphs where the bounds are tight are also presented. Finally, as a byproduct, we derive some spectral lower bounds for the diameter of a graph. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2019.01.016 |