Loading…

How few countries will do? Comparative survey analysis from a Bayesian perspective

Meuleman and Billiet (2009) have carried out a simulation study aimed at the question how many countries are needed for accurate multilevel SEM estimation in comparative studies. The authors concluded that a sample of 50 to 100 countries is needed for accurate estimation. Recently, Bayesian estimati...

Full description

Saved in:
Bibliographic Details
Published in:Survey research methods 2012-01, Vol.6 (2)
Main Authors: Joop J.C.M. Hox, Rens van de Schoot, Suzette Matthijsse
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c271t-37afbf60b2a3bc4a0fe14112d40968992ea63a0c5496d7e131c75dfceaaea0e03
cites
container_end_page
container_issue 2
container_start_page
container_title Survey research methods
container_volume 6
creator Joop J.C.M. Hox
Rens van de Schoot
Suzette Matthijsse
description Meuleman and Billiet (2009) have carried out a simulation study aimed at the question how many countries are needed for accurate multilevel SEM estimation in comparative studies. The authors concluded that a sample of 50 to 100 countries is needed for accurate estimation. Recently, Bayesian estimation methods have been introduced in structural equation modeling which should work well with much lower sample sizes. The current study reanalyzes the simulation of Meuleman and Billiet using Bayesian estimation to find the lowest number of countries needed when conducting multilevel SEM. The main result of our simulations is that a sample of about 20 countries is sufficient for accurate Bayesian estimation, which makes multilevel SEM practicable for the number of countries commonly available in large scale comparative surveys.
doi_str_mv 10.18148/srm/2012.v6i2.5033
format article
fullrecord <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_00ad20782e7c4c709f4ba7653fb153a3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_00ad20782e7c4c709f4ba7653fb153a3</doaj_id><sourcerecordid>oai_doaj_org_article_00ad20782e7c4c709f4ba7653fb153a3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-37afbf60b2a3bc4a0fe14112d40968992ea63a0c5496d7e131c75dfceaaea0e03</originalsourceid><addsrcrecordid>eNotjFtLwzAYQIMgOC-_wJf8gW5fLk3aJ9GhbjAQRJ_L1_SLZLRLSbqN_nvx8nTgcDiM3QtYikroapXTsJIg5PJkglyWoNQFW4jK6EIpI67Ydc57AGOqChbsfRPP3NOZu3g8TClQ5ufQ97yLD3wdhxETTuFEPB_TiWaOB-znHDL3KQ4c-RPOlAMe-Egpj-R-2lt26bHPdPfPG_b58vyx3hS7t9ft-nFXOGnFVCiLvvUGWomqdRrBk9BCyE5Dbaq6loRGIbhS16azJJRwtuy8I0RCIFA3bPv37SLumzGFAdPcRAzNr4jpq8E0BddTA4CdBFtJsk47C7XXLVpTKt-KUqFS38jKX1Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>How few countries will do? Comparative survey analysis from a Bayesian perspective</title><source>EZB Electronic Journals Library</source><creator>Joop J.C.M. Hox ; Rens van de Schoot ; Suzette Matthijsse</creator><creatorcontrib>Joop J.C.M. Hox ; Rens van de Schoot ; Suzette Matthijsse</creatorcontrib><description>Meuleman and Billiet (2009) have carried out a simulation study aimed at the question how many countries are needed for accurate multilevel SEM estimation in comparative studies. The authors concluded that a sample of 50 to 100 countries is needed for accurate estimation. Recently, Bayesian estimation methods have been introduced in structural equation modeling which should work well with much lower sample sizes. The current study reanalyzes the simulation of Meuleman and Billiet using Bayesian estimation to find the lowest number of countries needed when conducting multilevel SEM. The main result of our simulations is that a sample of about 20 countries is sufficient for accurate Bayesian estimation, which makes multilevel SEM practicable for the number of countries commonly available in large scale comparative surveys.</description><identifier>EISSN: 1864-3361</identifier><identifier>DOI: 10.18148/srm/2012.v6i2.5033</identifier><language>eng</language><publisher>European Survey Research Association</publisher><subject>Bayesian estimation ; cross-national research ; Multilevel SEM ; sample size</subject><ispartof>Survey research methods, 2012-01, Vol.6 (2)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-37afbf60b2a3bc4a0fe14112d40968992ea63a0c5496d7e131c75dfceaaea0e03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Joop J.C.M. Hox</creatorcontrib><creatorcontrib>Rens van de Schoot</creatorcontrib><creatorcontrib>Suzette Matthijsse</creatorcontrib><title>How few countries will do? Comparative survey analysis from a Bayesian perspective</title><title>Survey research methods</title><description>Meuleman and Billiet (2009) have carried out a simulation study aimed at the question how many countries are needed for accurate multilevel SEM estimation in comparative studies. The authors concluded that a sample of 50 to 100 countries is needed for accurate estimation. Recently, Bayesian estimation methods have been introduced in structural equation modeling which should work well with much lower sample sizes. The current study reanalyzes the simulation of Meuleman and Billiet using Bayesian estimation to find the lowest number of countries needed when conducting multilevel SEM. The main result of our simulations is that a sample of about 20 countries is sufficient for accurate Bayesian estimation, which makes multilevel SEM practicable for the number of countries commonly available in large scale comparative surveys.</description><subject>Bayesian estimation</subject><subject>cross-national research</subject><subject>Multilevel SEM</subject><subject>sample size</subject><issn>1864-3361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNotjFtLwzAYQIMgOC-_wJf8gW5fLk3aJ9GhbjAQRJ_L1_SLZLRLSbqN_nvx8nTgcDiM3QtYikroapXTsJIg5PJkglyWoNQFW4jK6EIpI67Ydc57AGOqChbsfRPP3NOZu3g8TClQ5ufQ97yLD3wdhxETTuFEPB_TiWaOB-znHDL3KQ4c-RPOlAMe-Egpj-R-2lt26bHPdPfPG_b58vyx3hS7t9ft-nFXOGnFVCiLvvUGWomqdRrBk9BCyE5Dbaq6loRGIbhS16azJJRwtuy8I0RCIFA3bPv37SLumzGFAdPcRAzNr4jpq8E0BddTA4CdBFtJsk47C7XXLVpTKt-KUqFS38jKX1Q</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Joop J.C.M. Hox</creator><creator>Rens van de Schoot</creator><creator>Suzette Matthijsse</creator><general>European Survey Research Association</general><scope>DOA</scope></search><sort><creationdate>20120101</creationdate><title>How few countries will do? Comparative survey analysis from a Bayesian perspective</title><author>Joop J.C.M. Hox ; Rens van de Schoot ; Suzette Matthijsse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-37afbf60b2a3bc4a0fe14112d40968992ea63a0c5496d7e131c75dfceaaea0e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bayesian estimation</topic><topic>cross-national research</topic><topic>Multilevel SEM</topic><topic>sample size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joop J.C.M. Hox</creatorcontrib><creatorcontrib>Rens van de Schoot</creatorcontrib><creatorcontrib>Suzette Matthijsse</creatorcontrib><collection>Directory of Open Access Journals</collection><jtitle>Survey research methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joop J.C.M. Hox</au><au>Rens van de Schoot</au><au>Suzette Matthijsse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How few countries will do? Comparative survey analysis from a Bayesian perspective</atitle><jtitle>Survey research methods</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>6</volume><issue>2</issue><eissn>1864-3361</eissn><abstract>Meuleman and Billiet (2009) have carried out a simulation study aimed at the question how many countries are needed for accurate multilevel SEM estimation in comparative studies. The authors concluded that a sample of 50 to 100 countries is needed for accurate estimation. Recently, Bayesian estimation methods have been introduced in structural equation modeling which should work well with much lower sample sizes. The current study reanalyzes the simulation of Meuleman and Billiet using Bayesian estimation to find the lowest number of countries needed when conducting multilevel SEM. The main result of our simulations is that a sample of about 20 countries is sufficient for accurate Bayesian estimation, which makes multilevel SEM practicable for the number of countries commonly available in large scale comparative surveys.</abstract><pub>European Survey Research Association</pub><doi>10.18148/srm/2012.v6i2.5033</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1864-3361
ispartof Survey research methods, 2012-01, Vol.6 (2)
issn 1864-3361
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_00ad20782e7c4c709f4ba7653fb153a3
source EZB Electronic Journals Library
subjects Bayesian estimation
cross-national research
Multilevel SEM
sample size
title How few countries will do? Comparative survey analysis from a Bayesian perspective
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20few%20countries%20will%20do?%20Comparative%20survey%20analysis%20from%20a%20Bayesian%20perspective&rft.jtitle=Survey%20research%20methods&rft.au=Joop%20J.C.M.%20Hox&rft.date=2012-01-01&rft.volume=6&rft.issue=2&rft.eissn=1864-3361&rft_id=info:doi/10.18148/srm/2012.v6i2.5033&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_00ad20782e7c4c709f4ba7653fb153a3%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c271t-37afbf60b2a3bc4a0fe14112d40968992ea63a0c5496d7e131c75dfceaaea0e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true