Loading…
How few countries will do? Comparative survey analysis from a Bayesian perspective
Meuleman and Billiet (2009) have carried out a simulation study aimed at the question how many countries are needed for accurate multilevel SEM estimation in comparative studies. The authors concluded that a sample of 50 to 100 countries is needed for accurate estimation. Recently, Bayesian estimati...
Saved in:
Published in: | Survey research methods 2012-01, Vol.6 (2) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c271t-37afbf60b2a3bc4a0fe14112d40968992ea63a0c5496d7e131c75dfceaaea0e03 |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Survey research methods |
container_volume | 6 |
creator | Joop J.C.M. Hox Rens van de Schoot Suzette Matthijsse |
description | Meuleman and Billiet (2009) have carried out a simulation study aimed at the question how many countries are needed for accurate multilevel SEM estimation in comparative studies. The authors concluded that a sample of 50 to 100 countries is needed for accurate estimation. Recently, Bayesian estimation methods have been introduced in structural equation modeling which should work well with much lower sample sizes. The current study reanalyzes the simulation of Meuleman and Billiet using Bayesian estimation to find the lowest number of countries needed when conducting multilevel SEM. The main result of our simulations is that a sample of about 20 countries is sufficient for accurate Bayesian estimation, which makes multilevel SEM practicable for the number of countries commonly available in large scale comparative surveys. |
doi_str_mv | 10.18148/srm/2012.v6i2.5033 |
format | article |
fullrecord | <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_00ad20782e7c4c709f4ba7653fb153a3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_00ad20782e7c4c709f4ba7653fb153a3</doaj_id><sourcerecordid>oai_doaj_org_article_00ad20782e7c4c709f4ba7653fb153a3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-37afbf60b2a3bc4a0fe14112d40968992ea63a0c5496d7e131c75dfceaaea0e03</originalsourceid><addsrcrecordid>eNotjFtLwzAYQIMgOC-_wJf8gW5fLk3aJ9GhbjAQRJ_L1_SLZLRLSbqN_nvx8nTgcDiM3QtYikroapXTsJIg5PJkglyWoNQFW4jK6EIpI67Ydc57AGOqChbsfRPP3NOZu3g8TClQ5ufQ97yLD3wdhxETTuFEPB_TiWaOB-znHDL3KQ4c-RPOlAMe-Egpj-R-2lt26bHPdPfPG_b58vyx3hS7t9ft-nFXOGnFVCiLvvUGWomqdRrBk9BCyE5Dbaq6loRGIbhS16azJJRwtuy8I0RCIFA3bPv37SLumzGFAdPcRAzNr4jpq8E0BddTA4CdBFtJsk47C7XXLVpTKt-KUqFS38jKX1Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>How few countries will do? Comparative survey analysis from a Bayesian perspective</title><source>EZB Electronic Journals Library</source><creator>Joop J.C.M. Hox ; Rens van de Schoot ; Suzette Matthijsse</creator><creatorcontrib>Joop J.C.M. Hox ; Rens van de Schoot ; Suzette Matthijsse</creatorcontrib><description>Meuleman and Billiet (2009) have carried out a simulation study aimed at the question how many countries are needed for accurate multilevel SEM estimation in comparative studies. The authors concluded that a sample of 50 to 100 countries is needed for accurate estimation. Recently, Bayesian estimation methods have been introduced in structural equation modeling which should work well with much lower sample sizes. The current study reanalyzes the simulation of Meuleman and Billiet using Bayesian estimation to find the lowest number of countries needed when conducting multilevel SEM. The main result of our simulations is that a sample of about 20 countries is sufficient for accurate Bayesian estimation, which makes multilevel SEM practicable for the number of countries commonly available in large scale comparative surveys.</description><identifier>EISSN: 1864-3361</identifier><identifier>DOI: 10.18148/srm/2012.v6i2.5033</identifier><language>eng</language><publisher>European Survey Research Association</publisher><subject>Bayesian estimation ; cross-national research ; Multilevel SEM ; sample size</subject><ispartof>Survey research methods, 2012-01, Vol.6 (2)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-37afbf60b2a3bc4a0fe14112d40968992ea63a0c5496d7e131c75dfceaaea0e03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Joop J.C.M. Hox</creatorcontrib><creatorcontrib>Rens van de Schoot</creatorcontrib><creatorcontrib>Suzette Matthijsse</creatorcontrib><title>How few countries will do? Comparative survey analysis from a Bayesian perspective</title><title>Survey research methods</title><description>Meuleman and Billiet (2009) have carried out a simulation study aimed at the question how many countries are needed for accurate multilevel SEM estimation in comparative studies. The authors concluded that a sample of 50 to 100 countries is needed for accurate estimation. Recently, Bayesian estimation methods have been introduced in structural equation modeling which should work well with much lower sample sizes. The current study reanalyzes the simulation of Meuleman and Billiet using Bayesian estimation to find the lowest number of countries needed when conducting multilevel SEM. The main result of our simulations is that a sample of about 20 countries is sufficient for accurate Bayesian estimation, which makes multilevel SEM practicable for the number of countries commonly available in large scale comparative surveys.</description><subject>Bayesian estimation</subject><subject>cross-national research</subject><subject>Multilevel SEM</subject><subject>sample size</subject><issn>1864-3361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNotjFtLwzAYQIMgOC-_wJf8gW5fLk3aJ9GhbjAQRJ_L1_SLZLRLSbqN_nvx8nTgcDiM3QtYikroapXTsJIg5PJkglyWoNQFW4jK6EIpI67Ydc57AGOqChbsfRPP3NOZu3g8TClQ5ufQ97yLD3wdhxETTuFEPB_TiWaOB-znHDL3KQ4c-RPOlAMe-Egpj-R-2lt26bHPdPfPG_b58vyx3hS7t9ft-nFXOGnFVCiLvvUGWomqdRrBk9BCyE5Dbaq6loRGIbhS16azJJRwtuy8I0RCIFA3bPv37SLumzGFAdPcRAzNr4jpq8E0BddTA4CdBFtJsk47C7XXLVpTKt-KUqFS38jKX1Q</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Joop J.C.M. Hox</creator><creator>Rens van de Schoot</creator><creator>Suzette Matthijsse</creator><general>European Survey Research Association</general><scope>DOA</scope></search><sort><creationdate>20120101</creationdate><title>How few countries will do? Comparative survey analysis from a Bayesian perspective</title><author>Joop J.C.M. Hox ; Rens van de Schoot ; Suzette Matthijsse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-37afbf60b2a3bc4a0fe14112d40968992ea63a0c5496d7e131c75dfceaaea0e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bayesian estimation</topic><topic>cross-national research</topic><topic>Multilevel SEM</topic><topic>sample size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joop J.C.M. Hox</creatorcontrib><creatorcontrib>Rens van de Schoot</creatorcontrib><creatorcontrib>Suzette Matthijsse</creatorcontrib><collection>Directory of Open Access Journals</collection><jtitle>Survey research methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joop J.C.M. Hox</au><au>Rens van de Schoot</au><au>Suzette Matthijsse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How few countries will do? Comparative survey analysis from a Bayesian perspective</atitle><jtitle>Survey research methods</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>6</volume><issue>2</issue><eissn>1864-3361</eissn><abstract>Meuleman and Billiet (2009) have carried out a simulation study aimed at the question how many countries are needed for accurate multilevel SEM estimation in comparative studies. The authors concluded that a sample of 50 to 100 countries is needed for accurate estimation. Recently, Bayesian estimation methods have been introduced in structural equation modeling which should work well with much lower sample sizes. The current study reanalyzes the simulation of Meuleman and Billiet using Bayesian estimation to find the lowest number of countries needed when conducting multilevel SEM. The main result of our simulations is that a sample of about 20 countries is sufficient for accurate Bayesian estimation, which makes multilevel SEM practicable for the number of countries commonly available in large scale comparative surveys.</abstract><pub>European Survey Research Association</pub><doi>10.18148/srm/2012.v6i2.5033</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1864-3361 |
ispartof | Survey research methods, 2012-01, Vol.6 (2) |
issn | 1864-3361 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_00ad20782e7c4c709f4ba7653fb153a3 |
source | EZB Electronic Journals Library |
subjects | Bayesian estimation cross-national research Multilevel SEM sample size |
title | How few countries will do? Comparative survey analysis from a Bayesian perspective |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20few%20countries%20will%20do?%20Comparative%20survey%20analysis%20from%20a%20Bayesian%20perspective&rft.jtitle=Survey%20research%20methods&rft.au=Joop%20J.C.M.%20Hox&rft.date=2012-01-01&rft.volume=6&rft.issue=2&rft.eissn=1864-3361&rft_id=info:doi/10.18148/srm/2012.v6i2.5033&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_00ad20782e7c4c709f4ba7653fb153a3%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c271t-37afbf60b2a3bc4a0fe14112d40968992ea63a0c5496d7e131c75dfceaaea0e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |