Loading…

Magnetohydrodynamics with physics informed neural operators

The modeling of multi-scale and multi-physics complex systems typically involves the use of scientific software that can optimally leverage extreme scale computing. Despite major developments in recent years, these simulations continue to be computationally intensive and time consuming. Here we expl...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning: science and technology 2023-09, Vol.4 (3), p.35002
Main Authors: Rosofsky, Shawn G, Huerta, E A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The modeling of multi-scale and multi-physics complex systems typically involves the use of scientific software that can optimally leverage extreme scale computing. Despite major developments in recent years, these simulations continue to be computationally intensive and time consuming. Here we explore the use of AI to accelerate the modeling of complex systems at a fraction of the computational cost of classical methods, and present the first application of physics informed neural operators (NOs) (PINOs) to model 2D incompressible magnetohydrodynamics (MHD) simulations. Our AI models incorporate tensor Fourier NOs as their backbone, which we implemented with the TensorLY package. Our results indicate that PINOs can accurately capture the physics of MHD simulations that describe laminar flows with Reynolds numbers Re â©˝ 250 . We also explore the applicability of our AI surrogates for turbulent flows, and discuss a variety of methodologies that may be incorporated in future work to create AI models that provide a computationally efficient and high fidelity description of MHD simulations for a broad range of Reynolds numbers. The scientific software developed in this project is released with this manuscript.
ISSN:2632-2153
2632-2153
DOI:10.1088/2632-2153/ace30a