Loading…
On a k-Order System of Lyness-Type Difference Equations
We consider the following system of Lyness-type difference equations: x1(n+1)=(akxk(n) +bk)/ xk-1(n-1) , x2(n+1)=(a1x1(n) +b1)/ xk(n- 1)[[PQ_REPLACE:[math]] ], xi(n+1)=(ai-1xi-1(n)+b i-1)/xi-2 (n-1), i =3,4,...,k, where ai[[PQ_REPLACE:[m ath]]], bi[[PQ_REPLACE:[m ath]]], i =1,2,...,k, are positive c...
Saved in:
Published in: | Advances in difference equations 2007-01, Vol.2007, p.1-14 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the following system of Lyness-type difference equations: x1(n+1)=(akxk(n) +bk)/ xk-1(n-1) , x2(n+1)=(a1x1(n) +b1)/ xk(n- 1)[[PQ_REPLACE:[math]] ], xi(n+1)=(ai-1xi-1(n)+b i-1)/xi-2 (n-1), i =3,4,...,k, where ai[[PQ_REPLACE:[m ath]]], bi[[PQ_REPLACE:[m ath]]], i =1,2,...,k, are positive constants, k > =3[[PQ_REPLAC E:[math]]] is an integer, and the initial values are positive real numbers. We study the existence of invariants, the boundedness, the persistence, and the periodicity of the positive solutions of this system. |
---|---|
ISSN: | 1687-1839 1687-1847 |
DOI: | 10.1155/2007/31272 |