Loading…

Finite-Time Line-of-Sight Guidance-Based Path-Following Control for a Wire-Driven Robot Fish

This paper presents an adaptive line-of-sight (LOS) guidance method, incorporating a finite-time sideslip angle observer to achieve precise planar path tracking of a bionic robotic fish driven by LOS. First, an adaptive LOS guidance method based on real-time cross-track error is presented. To mitiga...

Full description

Saved in:
Bibliographic Details
Published in:Biomimetics (Basel, Switzerland) Switzerland), 2024-09, Vol.9 (9), p.556
Main Authors: Mo, Yuyang, Su, Weiheng, Hong, Zicun, Li, Yunquan, Zhong, Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an adaptive line-of-sight (LOS) guidance method, incorporating a finite-time sideslip angle observer to achieve precise planar path tracking of a bionic robotic fish driven by LOS. First, an adaptive LOS guidance method based on real-time cross-track error is presented. To mitigate the adverse effects of the sideslip angle on tracking performance, a finite-time observer (FTO) based on finite-time convergence theory is employed to observe the time-varying sideslip angle and correct the target yaw. Subsequently, classical proportional-integral-derivative (PID) controllers are utilized to achieve yaw tracking, followed by static and dynamic yaw angle experiments for evaluation. Finally, the yaw-tracking-based path-tracking control strategy is applied to the robotic fish, whose motion is generated by an improved central pattern generator (CPG) and equipped with a six-axis inertial measurement unit for real-time swimming direction. Quantitative comparisons in tank experiments validate the effectiveness of the proposed method.
ISSN:2313-7673
2313-7673
DOI:10.3390/biomimetics9090556