Loading…
Determining the Mineral Admixture and Fiber on Mechanics and Fracture Properties of Concrete under Sulfate Attack
The concrete structure in the coastal area suffers from the combined erosion of sulfate and dry–wet cycles. In this study, in order to modify ordinary concrete, fly ash, slag powder, silica fume and polyester fiber are added separately. The crack resistance of concrete was studied through mechanical...
Saved in:
Published in: | Journal of marine science and engineering 2021-03, Vol.9 (3), p.251 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The concrete structure in the coastal area suffers from the combined erosion of sulfate and dry–wet cycles. In this study, in order to modify ordinary concrete, fly ash, slag powder, silica fume and polyester fiber are added separately. The crack resistance of concrete was studied through mechanical performance test and three-point bending fracture test of notched beam under sulfate dry–wet cycles. The load-crack opening displacement (P-CMOD) curve characteristics, fracture toughness and fracture energy of modified concrete after corrosion are calculated and analyzed. Results reveal that the P-CMOD curve of modified concrete after corrosion has gone through four stages of damage: initial bending section, proportional elastic section, stable expansion section and softening section. With the increase of dry–wet cycles, the overall corrosion resistance and toughening coefficient of modified concrete increases first and then decreases. Adding 25% fly ash can significantly enhance the fracture toughness of concrete in the initial stage. The addition of polyester fiber and slag is beneficial to the improvement of the instability toughness and fracture energy of the concrete in the later stage. |
---|---|
ISSN: | 2077-1312 2077-1312 |
DOI: | 10.3390/jmse9030251 |