Loading…
Verification of Opacity and Diagnosability for Pushdown Systems
In control theory of discrete event systems (DESs), one of the challenging topics is the extension of theory of finite-state DESs to that of infinite-state DESs. In this paper, we discuss verification of opacity and diagnosability for infinite-state DESs modeled by pushdown automata (called here pus...
Saved in:
Published in: | Journal of Applied Mathematics 2013-01, Vol.2013 (2013), p.527-536-561 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In control theory of discrete event systems (DESs), one of the challenging topics is the extension of theory of finite-state DESs to that of infinite-state DESs. In this paper, we discuss verification of opacity and diagnosability for infinite-state DESs modeled by pushdown automata (called here pushdown systems). First, we discuss opacity of pushdown systems and prove that opacity of pushdown systems is in general undecidable. In addition, a decidable class is clarified. Next, in diagnosability, we prove that under a certain assumption, which is different from the assumption in the existing result, diagnosability of pushdown systems is decidable. Furthermore, a necessary condition and a sufficient condition using finite-state approximations are derived. Finally, as one of the applications, we consider data integration using XML (Extensible Markup Language). The obtained result is useful for developing control theory of infinite-state DESs. |
---|---|
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/2013/654059 |