Loading…

Cross-grained Neural Collaborative Filtering for Recommendation

Collaborative Filtering has achieved great success in capturing users' preferences over items. However, existing techniques only consider limited collaborative signals, leading to unsatisfactory results when the user-item interactions are sparse. In this paper, we propose a Cross-grained Neural...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024-01, Vol.12, p.1-1
Main Authors: Li, Chuntai, Kou, Yue, Shen, Derong, Nie, Tiezheng, Li, Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Collaborative Filtering has achieved great success in capturing users' preferences over items. However, existing techniques only consider limited collaborative signals, leading to unsatisfactory results when the user-item interactions are sparse. In this paper, we propose a Cross-grained Neural Collaborative Filtering model (CNCF), which enables recommendation more accurate and explainable. Specifically, we first construct four kinds of interaction graphs to model both fine-grained collaborative signals and coarse-grained collaborative signals, which can better compensate for the high sparsity of user-item interactions. Then we propose a fine-grained collaborative representation learning and design Light Attribute Prediction Networks ( LAPN ) to capture the high-order attribute interactions and enhance the prediction accuracy. Finally, we propose a coarse-grained collaborative representation learning to represent user preferences based on diverse latent intent factors. The experiments demonstrate the high effectiveness of our proposed model.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2024.3384376