Loading…

An Improved Wake-Up Receiver Based on the Optimization of Low-Frequency Pattern Matchers

Wake-up receivers are gaining importance in power-aware wireless sensor networks, as they significantly reduce power consumption during RF reception, enabling asynchronous communication with low latency. However, the performance of wake-up receivers still lags behind that of off-the-shelf RF transce...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-09, Vol.23 (19), p.8188
Main Authors: Fromm, Robert, Kanoun, Olfa, Derbel, Faouzi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wake-up receivers are gaining importance in power-aware wireless sensor networks, as they significantly reduce power consumption during RF reception, enabling asynchronous communication with low latency. However, the performance of wake-up receivers still lags behind that of off-the-shelf RF transceivers. There is a growing demand for higher sensitivity, enhanced reliability, and lower latency while maintaining the lowest power consumption. In this article, our goal is to advance the performance of wake-up receivers based on off-the-shelf components and low-frequency pattern matchers. Through a systematic investigation, we proposed multiple improvements aimed at enhancing wake-up receiver performance and reliability. We introduced an improved passive envelope detector and realized a wake-up receiver for the 868 MHz band, which achieves a power consumption of 5.71 μW and latency of 9.02 ms. Our proposed wake-up receiver is capable of detecting signals down to an average power level of −61.6 dBm. These achievements represent significant advancements compared to the existing state of research on wake-up receivers based on low-frequency pattern matchers. Recent articles have not been able to attain such improved values in signal detection, power consumption, and latency.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23198188