Loading…
Laser-induced modification of an excited-state vibrational wave packet in neutral H_{2} observed in a pump-control scheme
We observe and modify a molecular vibrational wave packet in an electronically excited state of the neutral hydrogen molecule. In an extreme-ultraviolet (XUV) time-domain absorption spectroscopy experiment, we launch a vibrational wave packet in the D^{1}Π_{u}3pπ state of H_{2} and track its time ev...
Saved in:
Published in: | Physical review research 2024-09, Vol.6 (3), p.033326 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We observe and modify a molecular vibrational wave packet in an electronically excited state of the neutral hydrogen molecule. In an extreme-ultraviolet (XUV) time-domain absorption spectroscopy experiment, we launch a vibrational wave packet in the D^{1}Π_{u}3pπ state of H_{2} and track its time evolution via the coherent dipole response. The reconstructed time-dependent dipole from experimentally measured XUV absorption spectra provides access to the revival of the vibrational wave packet, which we control via an intense near-infrared (NIR) pulse. Tuning the intensity of the NIR pulse, we observe the revival of the wave packet to be significantly modified, which is supported by the results of a multilevel simulation as well as an analytical model based on state-specific phase shifts. The NIR field is applied only 7 fs after the creation of the wave packet but influences its evolution up to at least its first revival at 270 fs. This experimental approach for nonlocal-in-time laser modification of quantum dynamics in a pump-control scheme enabled by molecular self-probing is generally applicable to a large range of molecules and materials as it only requires the observation of absorption spectra. |
---|---|
ISSN: | 2643-1564 |
DOI: | 10.1103/PhysRevResearch.6.033326 |