Loading…
Anisotropic p-Laplacian Evolution of Fast Diffusion Type
We study an anisotropic, possibly non-homogeneous version of the evolution p-Laplacian equation when fast diffusion holds in all directions. We develop the basic theory and prove symmetrization results from which we derive sharp estimates. We prove the existence of a self-similar fundamental solutio...
Saved in:
Published in: | Advanced nonlinear studies 2021-08, Vol.21 (3), p.523-555 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study an anisotropic, possibly non-homogeneous version of the evolution p-Laplacian equation when fast diffusion holds in all directions. We develop the basic theory and prove symmetrization results from which we derive sharp
estimates. We prove the existence of a self-similar fundamental solution of this equation in the appropriate exponent range, and uniqueness in a smaller range. We also obtain the asymptotic behaviour of finite mass solutions in terms of the self-similar solution. Positivity, decay rates as well as other properties of the solutions are derived. The combination of self-similarity and anisotropy is not common in the related literature. It is however essential in our analysis and creates mathematical difficulties that are solved for fast diffusions. |
---|---|
ISSN: | 1536-1365 2169-0375 |
DOI: | 10.1515/ans-2021-2136 |