Loading…
Entanglement wedge reconstruction and entanglement of purification
In the holographic correspondence, subregion duality posits that knowledge of the mixed state of a finite spacelike region of the boundary theory allows full reconstruction of a specific region of the bulk, known as the entanglement wedge. This statement has been proven for local bulk operators. In...
Saved in:
Published in: | The European physical journal. C, Particles and fields Particles and fields, 2018-08, Vol.78 (8), p.1-20, Article 646 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the holographic correspondence, subregion duality posits that knowledge of the mixed state of a finite spacelike region of the boundary theory allows full reconstruction of a specific region of the bulk, known as the entanglement wedge. This statement has been proven for local bulk operators. In this paper, specializing first for simplicity to a Rindler wedge of
AdS
3
, we find that generic
curves
within the wedge are in fact
not
fully reconstructible with entanglement entropies in the corresponding boundary region, even after using the most general variant of hole-ography, which was recently shown to suffice for reconstruction of arbitrary spacelike curves in the Poincaré patch. This limitation is an analog of the familiar phenomenon of entanglement shadows, which we call ‘entanglement shade’. We overcome it by showing that the information about the nonreconstructible curve segments is encoded in a slight generalization of the concept of entanglement of purification, whose holographic dual has been discussed very recently. We introduce the notion of ‘differential purification’, and demonstrate that, in combination with differential entropy, it enables the complete reconstruction of all spacelike curves within an arbitrary entanglement wedge in any 3-dimensional bulk geometry. |
---|---|
ISSN: | 1434-6044 1434-6052 |
DOI: | 10.1140/epjc/s10052-018-6140-2 |