Loading…

Parameter Optimisation-Based Hybrid Reference Evapotranspiration Prediction Models: A Systematic Review of Current Implementations and Future Research Directions

A hybrid machine learning (ML) model is becoming a common trend in predicting reference evapotranspiration (ETo) research. This study aims to systematically review ML models that are integrated with meta-heuristic algorithms (i.e., parameter optimisation-based hybrid models, OBH) for predicting ETo...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2023-01, Vol.14 (1), p.77
Main Authors: Khairan, Hadeel E., Zubaidi, Salah L., Muhsen, Yousif Raad, Al-Ansari, Nadhir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-397da380c10a05e075d8e115b1ba9cd1b5d596ccf1944f297f411c96332ac3913
cites cdi_FETCH-LOGICAL-c451t-397da380c10a05e075d8e115b1ba9cd1b5d596ccf1944f297f411c96332ac3913
container_end_page
container_issue 1
container_start_page 77
container_title Atmosphere
container_volume 14
creator Khairan, Hadeel E.
Zubaidi, Salah L.
Muhsen, Yousif Raad
Al-Ansari, Nadhir
description A hybrid machine learning (ML) model is becoming a common trend in predicting reference evapotranspiration (ETo) research. This study aims to systematically review ML models that are integrated with meta-heuristic algorithms (i.e., parameter optimisation-based hybrid models, OBH) for predicting ETo data. Over five years, from 2018–2022, the articles published in three reliable databases, including Web of Science, ScienceDirect, and IEEE Xplore, were considered. According to the protocol search, 1485 papers were selected. After three filters were applied, the final set contained 33 papers related to the nominated topic. The final set of papers was categorised into five groups. The first group, swarm intelligence-based algorithms, had the highest proportion of papers, (23/33) and was superior to all other algorithms. The second group (evolution computation-based algorithms), third group (physics-based algorithms), fourth group (hybrid-based algorithms), and fifth group (reviews and surveys) had (4/33), (1/33), (2/33), and (3/33), respectively. However, researchers have not treated OBH models in much detail, and there is still room for improvement by investigating both newly single and hybrid meta-heuristic algorithms. Finally, this study hopes to assist researchers in understanding the options and gaps in this line of research.
doi_str_mv 10.3390/atmos14010077
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_07da8051b7c3433cb1e05021f0f806d8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_07da8051b7c3433cb1e05021f0f806d8</doaj_id><sourcerecordid>2767164831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-397da380c10a05e075d8e115b1ba9cd1b5d596ccf1944f297f411c96332ac3913</originalsourceid><addsrcrecordid>eNpVkk1v3CAQhq2qlRqlOfaO1GvdgMHG9LbdJM1KqRL164owjFtWtnEHnGh_Tv9pibeqGi68Qg_PMGiK4jWj7zhX9NykMUQmKKNUymfFSUUlL4Xg_Pl_-WVxFuOe5iUUr7g4KX7fGTQjJEByOyc_-miSD1P5wURw5PrQoXfkM_SAMFkgl_dmDgnNFGePK0nuEJy3a_wUHAzxPdmQL4eYYMyAzZfvPTyQ0JPtgtmSyG6cBxhzWgWRmMmRqyUtCBmOYND-JBceYZXGV8WL3gwRzv7up8W3q8uv2-vy5vbjbru5Ka2oWSq5ks7wllpGDa2Bytq1wFjdsc4o61hXu1o11vZMCdFXSvaCMasazitjuWL8tNgdvS6YvZ7RjwYPOhiv14OAP7TB3NAAmuZSLa1ZJy3Pv2o7BrSmFetp39LGtdn19uiKDzAv3RPbhf--WW1DWrSqWUUz_uaIzxh-LRCT3ocFp9ytrmQjWSNa_vjA8khZDDEi9P-0jOrHGdBPZoD_AbWIp5g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767164831</pqid></control><display><type>article</type><title>Parameter Optimisation-Based Hybrid Reference Evapotranspiration Prediction Models: A Systematic Review of Current Implementations and Future Research Directions</title><source>Publicly Available Content Database</source><creator>Khairan, Hadeel E. ; Zubaidi, Salah L. ; Muhsen, Yousif Raad ; Al-Ansari, Nadhir</creator><creatorcontrib>Khairan, Hadeel E. ; Zubaidi, Salah L. ; Muhsen, Yousif Raad ; Al-Ansari, Nadhir</creatorcontrib><description>A hybrid machine learning (ML) model is becoming a common trend in predicting reference evapotranspiration (ETo) research. This study aims to systematically review ML models that are integrated with meta-heuristic algorithms (i.e., parameter optimisation-based hybrid models, OBH) for predicting ETo data. Over five years, from 2018–2022, the articles published in three reliable databases, including Web of Science, ScienceDirect, and IEEE Xplore, were considered. According to the protocol search, 1485 papers were selected. After three filters were applied, the final set contained 33 papers related to the nominated topic. The final set of papers was categorised into five groups. The first group, swarm intelligence-based algorithms, had the highest proportion of papers, (23/33) and was superior to all other algorithms. The second group (evolution computation-based algorithms), third group (physics-based algorithms), fourth group (hybrid-based algorithms), and fifth group (reviews and surveys) had (4/33), (1/33), (2/33), and (3/33), respectively. However, researchers have not treated OBH models in much detail, and there is still room for improvement by investigating both newly single and hybrid meta-heuristic algorithms. Finally, this study hopes to assist researchers in understanding the options and gaps in this line of research.</description><identifier>ISSN: 2073-4433</identifier><identifier>EISSN: 2073-4433</identifier><identifier>DOI: 10.3390/atmos14010077</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Agricultural production ; Algorithms ; Artificial intelligence ; Bibliometrics ; Computation ; Evapotranspiration ; Evapotranspiration models ; Evapotranspiration trends ; Evolutionary algorithms ; Geoteknik ; Heuristic ; Heuristic methods ; hybrid model ; Hydrologic cycle ; Machine learning ; Mathematical models ; meta-heuristic algorithms ; Modelling ; Neural networks ; Optimization ; Parameters ; Physics ; Prediction models ; Problem solving ; reference evapotranspiration ; Soil Mechanics ; Support vector machines ; Swarm intelligence ; systematic review ; Taxonomy</subject><ispartof>Atmosphere, 2023-01, Vol.14 (1), p.77</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-397da380c10a05e075d8e115b1ba9cd1b5d596ccf1944f297f411c96332ac3913</citedby><cites>FETCH-LOGICAL-c451t-397da380c10a05e075d8e115b1ba9cd1b5d596ccf1944f297f411c96332ac3913</cites><orcidid>0000-0002-4765-4189 ; 0000-0002-6790-2653 ; 0000-0003-4229-9314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767164831/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767164831?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-95120$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Khairan, Hadeel E.</creatorcontrib><creatorcontrib>Zubaidi, Salah L.</creatorcontrib><creatorcontrib>Muhsen, Yousif Raad</creatorcontrib><creatorcontrib>Al-Ansari, Nadhir</creatorcontrib><title>Parameter Optimisation-Based Hybrid Reference Evapotranspiration Prediction Models: A Systematic Review of Current Implementations and Future Research Directions</title><title>Atmosphere</title><description>A hybrid machine learning (ML) model is becoming a common trend in predicting reference evapotranspiration (ETo) research. This study aims to systematically review ML models that are integrated with meta-heuristic algorithms (i.e., parameter optimisation-based hybrid models, OBH) for predicting ETo data. Over five years, from 2018–2022, the articles published in three reliable databases, including Web of Science, ScienceDirect, and IEEE Xplore, were considered. According to the protocol search, 1485 papers were selected. After three filters were applied, the final set contained 33 papers related to the nominated topic. The final set of papers was categorised into five groups. The first group, swarm intelligence-based algorithms, had the highest proportion of papers, (23/33) and was superior to all other algorithms. The second group (evolution computation-based algorithms), third group (physics-based algorithms), fourth group (hybrid-based algorithms), and fifth group (reviews and surveys) had (4/33), (1/33), (2/33), and (3/33), respectively. However, researchers have not treated OBH models in much detail, and there is still room for improvement by investigating both newly single and hybrid meta-heuristic algorithms. Finally, this study hopes to assist researchers in understanding the options and gaps in this line of research.</description><subject>Accuracy</subject><subject>Agricultural production</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bibliometrics</subject><subject>Computation</subject><subject>Evapotranspiration</subject><subject>Evapotranspiration models</subject><subject>Evapotranspiration trends</subject><subject>Evolutionary algorithms</subject><subject>Geoteknik</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>hybrid model</subject><subject>Hydrologic cycle</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>meta-heuristic algorithms</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Physics</subject><subject>Prediction models</subject><subject>Problem solving</subject><subject>reference evapotranspiration</subject><subject>Soil Mechanics</subject><subject>Support vector machines</subject><subject>Swarm intelligence</subject><subject>systematic review</subject><subject>Taxonomy</subject><issn>2073-4433</issn><issn>2073-4433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkk1v3CAQhq2qlRqlOfaO1GvdgMHG9LbdJM1KqRL164owjFtWtnEHnGh_Tv9pibeqGi68Qg_PMGiK4jWj7zhX9NykMUQmKKNUymfFSUUlL4Xg_Pl_-WVxFuOe5iUUr7g4KX7fGTQjJEByOyc_-miSD1P5wURw5PrQoXfkM_SAMFkgl_dmDgnNFGePK0nuEJy3a_wUHAzxPdmQL4eYYMyAzZfvPTyQ0JPtgtmSyG6cBxhzWgWRmMmRqyUtCBmOYND-JBceYZXGV8WL3gwRzv7up8W3q8uv2-vy5vbjbru5Ka2oWSq5ks7wllpGDa2Bytq1wFjdsc4o61hXu1o11vZMCdFXSvaCMasazitjuWL8tNgdvS6YvZ7RjwYPOhiv14OAP7TB3NAAmuZSLa1ZJy3Pv2o7BrSmFetp39LGtdn19uiKDzAv3RPbhf--WW1DWrSqWUUz_uaIzxh-LRCT3ocFp9ytrmQjWSNa_vjA8khZDDEi9P-0jOrHGdBPZoD_AbWIp5g</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Khairan, Hadeel E.</creator><creator>Zubaidi, Salah L.</creator><creator>Muhsen, Yousif Raad</creator><creator>Al-Ansari, Nadhir</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4765-4189</orcidid><orcidid>https://orcid.org/0000-0002-6790-2653</orcidid><orcidid>https://orcid.org/0000-0003-4229-9314</orcidid></search><sort><creationdate>20230101</creationdate><title>Parameter Optimisation-Based Hybrid Reference Evapotranspiration Prediction Models: A Systematic Review of Current Implementations and Future Research Directions</title><author>Khairan, Hadeel E. ; Zubaidi, Salah L. ; Muhsen, Yousif Raad ; Al-Ansari, Nadhir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-397da380c10a05e075d8e115b1ba9cd1b5d596ccf1944f297f411c96332ac3913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Agricultural production</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bibliometrics</topic><topic>Computation</topic><topic>Evapotranspiration</topic><topic>Evapotranspiration models</topic><topic>Evapotranspiration trends</topic><topic>Evolutionary algorithms</topic><topic>Geoteknik</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>hybrid model</topic><topic>Hydrologic cycle</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>meta-heuristic algorithms</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Physics</topic><topic>Prediction models</topic><topic>Problem solving</topic><topic>reference evapotranspiration</topic><topic>Soil Mechanics</topic><topic>Support vector machines</topic><topic>Swarm intelligence</topic><topic>systematic review</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khairan, Hadeel E.</creatorcontrib><creatorcontrib>Zubaidi, Salah L.</creatorcontrib><creatorcontrib>Muhsen, Yousif Raad</creatorcontrib><creatorcontrib>Al-Ansari, Nadhir</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khairan, Hadeel E.</au><au>Zubaidi, Salah L.</au><au>Muhsen, Yousif Raad</au><au>Al-Ansari, Nadhir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter Optimisation-Based Hybrid Reference Evapotranspiration Prediction Models: A Systematic Review of Current Implementations and Future Research Directions</atitle><jtitle>Atmosphere</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>77</spage><pages>77-</pages><issn>2073-4433</issn><eissn>2073-4433</eissn><abstract>A hybrid machine learning (ML) model is becoming a common trend in predicting reference evapotranspiration (ETo) research. This study aims to systematically review ML models that are integrated with meta-heuristic algorithms (i.e., parameter optimisation-based hybrid models, OBH) for predicting ETo data. Over five years, from 2018–2022, the articles published in three reliable databases, including Web of Science, ScienceDirect, and IEEE Xplore, were considered. According to the protocol search, 1485 papers were selected. After three filters were applied, the final set contained 33 papers related to the nominated topic. The final set of papers was categorised into five groups. The first group, swarm intelligence-based algorithms, had the highest proportion of papers, (23/33) and was superior to all other algorithms. The second group (evolution computation-based algorithms), third group (physics-based algorithms), fourth group (hybrid-based algorithms), and fifth group (reviews and surveys) had (4/33), (1/33), (2/33), and (3/33), respectively. However, researchers have not treated OBH models in much detail, and there is still room for improvement by investigating both newly single and hybrid meta-heuristic algorithms. Finally, this study hopes to assist researchers in understanding the options and gaps in this line of research.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/atmos14010077</doi><orcidid>https://orcid.org/0000-0002-4765-4189</orcidid><orcidid>https://orcid.org/0000-0002-6790-2653</orcidid><orcidid>https://orcid.org/0000-0003-4229-9314</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4433
ispartof Atmosphere, 2023-01, Vol.14 (1), p.77
issn 2073-4433
2073-4433
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_07da8051b7c3433cb1e05021f0f806d8
source Publicly Available Content Database
subjects Accuracy
Agricultural production
Algorithms
Artificial intelligence
Bibliometrics
Computation
Evapotranspiration
Evapotranspiration models
Evapotranspiration trends
Evolutionary algorithms
Geoteknik
Heuristic
Heuristic methods
hybrid model
Hydrologic cycle
Machine learning
Mathematical models
meta-heuristic algorithms
Modelling
Neural networks
Optimization
Parameters
Physics
Prediction models
Problem solving
reference evapotranspiration
Soil Mechanics
Support vector machines
Swarm intelligence
systematic review
Taxonomy
title Parameter Optimisation-Based Hybrid Reference Evapotranspiration Prediction Models: A Systematic Review of Current Implementations and Future Research Directions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A14%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20Optimisation-Based%20Hybrid%20Reference%20Evapotranspiration%20Prediction%20Models:%20A%20Systematic%20Review%20of%20Current%20Implementations%20and%20Future%20Research%20Directions&rft.jtitle=Atmosphere&rft.au=Khairan,%20Hadeel%20E.&rft.date=2023-01-01&rft.volume=14&rft.issue=1&rft.spage=77&rft.pages=77-&rft.issn=2073-4433&rft.eissn=2073-4433&rft_id=info:doi/10.3390/atmos14010077&rft_dat=%3Cproquest_doaj_%3E2767164831%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-397da380c10a05e075d8e115b1ba9cd1b5d596ccf1944f297f411c96332ac3913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767164831&rft_id=info:pmid/&rfr_iscdi=true