Loading…

A universal variational quantum eigensolver for non-Hermitian systems

Many quantum algorithms are developed to evaluate eigenvalues for Hermitian matrices. However, few practical approach exists for the eigenanalysis of non-Hermintian ones, such as arising from modern power systems. The main difficulty lies in the fact that, as the eigenvector matrix of a general matr...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2023-12, Vol.13 (1), p.22313-15, Article 22313
Main Authors: Zhao, Huanfeng, Zhang, Peng, Wei, Tzu-Chieh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many quantum algorithms are developed to evaluate eigenvalues for Hermitian matrices. However, few practical approach exists for the eigenanalysis of non-Hermintian ones, such as arising from modern power systems. The main difficulty lies in the fact that, as the eigenvector matrix of a general matrix can be non-unitary, solving a general eigenvalue problem is inherently incompatible with existing unitary-gate-based quantum methods. To fill this gap, this paper introduces a Variational Quantum Universal Eigensolver (VQUE), which is deployable on noisy intermediate scale quantum computers. Our new contributions include: (1) The first universal variational quantum algorithm capable of evaluating the eigenvalues of non-Hermitian matrices—Inspired by Schur’s triangularization theory, VQUE unitarizes the eigenvalue problem to a procedure of searching unitary transformation matrices via quantum devices; (2) A Quantum Process Snapshot technique is devised to make VQUE maintain the potential quantum advantage inherited from the original variational quantum eigensolver—With additional O ( l o g 2 N ) quantum gates, this method efficiently identifies whether a unitary operator is triangular with respect to a given basis; (3) Successful deployment and validation of VQUE on a real noisy quantum computer, which demonstrates the algorithm’s feasibility. We also undertake a comprehensive parametric study to validate VQUE’s scalability, generality, and performance in realistic applications.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-49662-5