Loading…

Dynamic Simulation Model-Driven Fault Diagnosis Method for Bearing under Missing Fault-Type Samples

Existing generative adversarial networks (GAN) have potential in data augmentation and in the intelligent fault diagnosis of bearings. However, most relevant studies only focus on the fault diagnosis of rotating machines with sufficient fault-type samples, and some rare fault-type samples may be mis...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-03, Vol.13 (5), p.2857
Main Authors: Ma, Junqing, Jiang, Xingxing, Han, Baokun, Wang, Jinrui, Zhang, Zongzhen, Bao, Huaiqian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Existing generative adversarial networks (GAN) have potential in data augmentation and in the intelligent fault diagnosis of bearings. However, most relevant studies only focus on the fault diagnosis of rotating machines with sufficient fault-type samples, and some rare fault-type samples may be missing in training in practical engineering. To address those deficiencies, this paper presents an intelligent fault diagnosis method based on the dynamic simulation model and Wasserstein generative adversarial network with gradient normalization (WGAN-GN). The dynamic simulation model of bearing faults is constructed to obtaining simulation signals to replace and complement the missing fault samples, which are combined with the measured signals as training data and then input into the proposed WGAN-GN model for expanding and enhancing the data. To test the effectiveness of the simulated samples, a fault classification model constructed by stacked autoencoders (SAE) is used to classify the enhanced dataset. According to the results, the proposed model performs well when used to diagnose faults under missing samples and is preferable to other methods.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13052857