Loading…

Dynamic Simulation Model-Driven Fault Diagnosis Method for Bearing under Missing Fault-Type Samples

Existing generative adversarial networks (GAN) have potential in data augmentation and in the intelligent fault diagnosis of bearings. However, most relevant studies only focus on the fault diagnosis of rotating machines with sufficient fault-type samples, and some rare fault-type samples may be mis...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-03, Vol.13 (5), p.2857
Main Authors: Ma, Junqing, Jiang, Xingxing, Han, Baokun, Wang, Jinrui, Zhang, Zongzhen, Bao, Huaiqian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-f21df5729a01fd2670022ff2ec728021d70f3853abd51c7d4ace687843d5be683
cites cdi_FETCH-LOGICAL-c403t-f21df5729a01fd2670022ff2ec728021d70f3853abd51c7d4ace687843d5be683
container_end_page
container_issue 5
container_start_page 2857
container_title Applied sciences
container_volume 13
creator Ma, Junqing
Jiang, Xingxing
Han, Baokun
Wang, Jinrui
Zhang, Zongzhen
Bao, Huaiqian
description Existing generative adversarial networks (GAN) have potential in data augmentation and in the intelligent fault diagnosis of bearings. However, most relevant studies only focus on the fault diagnosis of rotating machines with sufficient fault-type samples, and some rare fault-type samples may be missing in training in practical engineering. To address those deficiencies, this paper presents an intelligent fault diagnosis method based on the dynamic simulation model and Wasserstein generative adversarial network with gradient normalization (WGAN-GN). The dynamic simulation model of bearing faults is constructed to obtaining simulation signals to replace and complement the missing fault samples, which are combined with the measured signals as training data and then input into the proposed WGAN-GN model for expanding and enhancing the data. To test the effectiveness of the simulated samples, a fault classification model constructed by stacked autoencoders (SAE) is used to classify the enhanced dataset. According to the results, the proposed model performs well when used to diagnose faults under missing samples and is preferable to other methods.
doi_str_mv 10.3390/app13052857
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_09aeae251a1c43fc9c60305e0c44d9c7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751988474</galeid><doaj_id>oai_doaj_org_article_09aeae251a1c43fc9c60305e0c44d9c7</doaj_id><sourcerecordid>A751988474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-f21df5729a01fd2670022ff2ec728021d70f3853abd51c7d4ace687843d5be683</originalsourceid><addsrcrecordid>eNpNUU1PGzEQXVWtVEQ59Q9Y4lgt-DP2HikpFImoB-jZGuxxcLSxt_Zupfx7DKkqZg7z9d7TaKbrvjJ6IcRAL2GamKCKG6U_dCec6lUvJNMf3-Wfu7Nad7TZwIRh9KRz60OCfXTkIe6XEeaYE9lkj2O_LvEvJnIDyziTdYRtyjVWssH5OXsSciHfEUpMW7Ikj4VsYq2v1RuhfzxMSB5gP41Yv3SfAowVz_7F0-73zY_H65_9_a_bu-ur-95JKuY-cOaD0nwAyoLnK00p5yFwdJob2oaaBmGUgCevmNNegsOV0UYKr55aJk67u6Ouz7CzU4l7KAebIdq3Ri5bC2WObkRLB0BArhgwJ0Vwg1vRdjukTko_ON20zo9aU8l_Fqyz3eWlpLa-5dooZqQZaENdHFFbaKIxhTwXcM09tpvmhCG2_pVWbDBGatkI344EV3KtBcP_NRm1r1-0774oXgAjz45D</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785184890</pqid></control><display><type>article</type><title>Dynamic Simulation Model-Driven Fault Diagnosis Method for Bearing under Missing Fault-Type Samples</title><source>Access via ProQuest (Open Access)</source><creator>Ma, Junqing ; Jiang, Xingxing ; Han, Baokun ; Wang, Jinrui ; Zhang, Zongzhen ; Bao, Huaiqian</creator><creatorcontrib>Ma, Junqing ; Jiang, Xingxing ; Han, Baokun ; Wang, Jinrui ; Zhang, Zongzhen ; Bao, Huaiqian</creatorcontrib><description>Existing generative adversarial networks (GAN) have potential in data augmentation and in the intelligent fault diagnosis of bearings. However, most relevant studies only focus on the fault diagnosis of rotating machines with sufficient fault-type samples, and some rare fault-type samples may be missing in training in practical engineering. To address those deficiencies, this paper presents an intelligent fault diagnosis method based on the dynamic simulation model and Wasserstein generative adversarial network with gradient normalization (WGAN-GN). The dynamic simulation model of bearing faults is constructed to obtaining simulation signals to replace and complement the missing fault samples, which are combined with the measured signals as training data and then input into the proposed WGAN-GN model for expanding and enhancing the data. To test the effectiveness of the simulated samples, a fault classification model constructed by stacked autoencoders (SAE) is used to classify the enhanced dataset. According to the results, the proposed model performs well when used to diagnose faults under missing samples and is preferable to other methods.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13052857</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Computer simulation ; Computer-generated environments ; Data augmentation ; Datasets ; dynamic simulation ; Fault diagnosis ; generative adversarial networks ; gradient normalization ; Liquors ; Machinery ; Methods ; missing samples ; Simulation ; Simulation models</subject><ispartof>Applied sciences, 2023-03, Vol.13 (5), p.2857</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-f21df5729a01fd2670022ff2ec728021d70f3853abd51c7d4ace687843d5be683</citedby><cites>FETCH-LOGICAL-c403t-f21df5729a01fd2670022ff2ec728021d70f3853abd51c7d4ace687843d5be683</cites><orcidid>0000-0003-2987-6930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2785184890/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2785184890?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Ma, Junqing</creatorcontrib><creatorcontrib>Jiang, Xingxing</creatorcontrib><creatorcontrib>Han, Baokun</creatorcontrib><creatorcontrib>Wang, Jinrui</creatorcontrib><creatorcontrib>Zhang, Zongzhen</creatorcontrib><creatorcontrib>Bao, Huaiqian</creatorcontrib><title>Dynamic Simulation Model-Driven Fault Diagnosis Method for Bearing under Missing Fault-Type Samples</title><title>Applied sciences</title><description>Existing generative adversarial networks (GAN) have potential in data augmentation and in the intelligent fault diagnosis of bearings. However, most relevant studies only focus on the fault diagnosis of rotating machines with sufficient fault-type samples, and some rare fault-type samples may be missing in training in practical engineering. To address those deficiencies, this paper presents an intelligent fault diagnosis method based on the dynamic simulation model and Wasserstein generative adversarial network with gradient normalization (WGAN-GN). The dynamic simulation model of bearing faults is constructed to obtaining simulation signals to replace and complement the missing fault samples, which are combined with the measured signals as training data and then input into the proposed WGAN-GN model for expanding and enhancing the data. To test the effectiveness of the simulated samples, a fault classification model constructed by stacked autoencoders (SAE) is used to classify the enhanced dataset. According to the results, the proposed model performs well when used to diagnose faults under missing samples and is preferable to other methods.</description><subject>Computer simulation</subject><subject>Computer-generated environments</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>dynamic simulation</subject><subject>Fault diagnosis</subject><subject>generative adversarial networks</subject><subject>gradient normalization</subject><subject>Liquors</subject><subject>Machinery</subject><subject>Methods</subject><subject>missing samples</subject><subject>Simulation</subject><subject>Simulation models</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PGzEQXVWtVEQ59Q9Y4lgt-DP2HikpFImoB-jZGuxxcLSxt_Zupfx7DKkqZg7z9d7TaKbrvjJ6IcRAL2GamKCKG6U_dCec6lUvJNMf3-Wfu7Nad7TZwIRh9KRz60OCfXTkIe6XEeaYE9lkj2O_LvEvJnIDyziTdYRtyjVWssH5OXsSciHfEUpMW7Ikj4VsYq2v1RuhfzxMSB5gP41Yv3SfAowVz_7F0-73zY_H65_9_a_bu-ur-95JKuY-cOaD0nwAyoLnK00p5yFwdJob2oaaBmGUgCevmNNegsOV0UYKr55aJk67u6Ouz7CzU4l7KAebIdq3Ri5bC2WObkRLB0BArhgwJ0Vwg1vRdjukTko_ON20zo9aU8l_Fqyz3eWlpLa-5dooZqQZaENdHFFbaKIxhTwXcM09tpvmhCG2_pVWbDBGatkI344EV3KtBcP_NRm1r1-0774oXgAjz45D</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Ma, Junqing</creator><creator>Jiang, Xingxing</creator><creator>Han, Baokun</creator><creator>Wang, Jinrui</creator><creator>Zhang, Zongzhen</creator><creator>Bao, Huaiqian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2987-6930</orcidid></search><sort><creationdate>20230301</creationdate><title>Dynamic Simulation Model-Driven Fault Diagnosis Method for Bearing under Missing Fault-Type Samples</title><author>Ma, Junqing ; Jiang, Xingxing ; Han, Baokun ; Wang, Jinrui ; Zhang, Zongzhen ; Bao, Huaiqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-f21df5729a01fd2670022ff2ec728021d70f3853abd51c7d4ace687843d5be683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer simulation</topic><topic>Computer-generated environments</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>dynamic simulation</topic><topic>Fault diagnosis</topic><topic>generative adversarial networks</topic><topic>gradient normalization</topic><topic>Liquors</topic><topic>Machinery</topic><topic>Methods</topic><topic>missing samples</topic><topic>Simulation</topic><topic>Simulation models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Junqing</creatorcontrib><creatorcontrib>Jiang, Xingxing</creatorcontrib><creatorcontrib>Han, Baokun</creatorcontrib><creatorcontrib>Wang, Jinrui</creatorcontrib><creatorcontrib>Zhang, Zongzhen</creatorcontrib><creatorcontrib>Bao, Huaiqian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Junqing</au><au>Jiang, Xingxing</au><au>Han, Baokun</au><au>Wang, Jinrui</au><au>Zhang, Zongzhen</au><au>Bao, Huaiqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Simulation Model-Driven Fault Diagnosis Method for Bearing under Missing Fault-Type Samples</atitle><jtitle>Applied sciences</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>13</volume><issue>5</issue><spage>2857</spage><pages>2857-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Existing generative adversarial networks (GAN) have potential in data augmentation and in the intelligent fault diagnosis of bearings. However, most relevant studies only focus on the fault diagnosis of rotating machines with sufficient fault-type samples, and some rare fault-type samples may be missing in training in practical engineering. To address those deficiencies, this paper presents an intelligent fault diagnosis method based on the dynamic simulation model and Wasserstein generative adversarial network with gradient normalization (WGAN-GN). The dynamic simulation model of bearing faults is constructed to obtaining simulation signals to replace and complement the missing fault samples, which are combined with the measured signals as training data and then input into the proposed WGAN-GN model for expanding and enhancing the data. To test the effectiveness of the simulated samples, a fault classification model constructed by stacked autoencoders (SAE) is used to classify the enhanced dataset. According to the results, the proposed model performs well when used to diagnose faults under missing samples and is preferable to other methods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13052857</doi><orcidid>https://orcid.org/0000-0003-2987-6930</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2023-03, Vol.13 (5), p.2857
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_09aeae251a1c43fc9c60305e0c44d9c7
source Access via ProQuest (Open Access)
subjects Computer simulation
Computer-generated environments
Data augmentation
Datasets
dynamic simulation
Fault diagnosis
generative adversarial networks
gradient normalization
Liquors
Machinery
Methods
missing samples
Simulation
Simulation models
title Dynamic Simulation Model-Driven Fault Diagnosis Method for Bearing under Missing Fault-Type Samples
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Simulation%20Model-Driven%20Fault%20Diagnosis%20Method%20for%20Bearing%20under%20Missing%20Fault-Type%20Samples&rft.jtitle=Applied%20sciences&rft.au=Ma,%20Junqing&rft.date=2023-03-01&rft.volume=13&rft.issue=5&rft.spage=2857&rft.pages=2857-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13052857&rft_dat=%3Cgale_doaj_%3EA751988474%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-f21df5729a01fd2670022ff2ec728021d70f3853abd51c7d4ace687843d5be683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2785184890&rft_id=info:pmid/&rft_galeid=A751988474&rfr_iscdi=true