Loading…
Dynamic Simulation Model-Driven Fault Diagnosis Method for Bearing under Missing Fault-Type Samples
Existing generative adversarial networks (GAN) have potential in data augmentation and in the intelligent fault diagnosis of bearings. However, most relevant studies only focus on the fault diagnosis of rotating machines with sufficient fault-type samples, and some rare fault-type samples may be mis...
Saved in:
Published in: | Applied sciences 2023-03, Vol.13 (5), p.2857 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-f21df5729a01fd2670022ff2ec728021d70f3853abd51c7d4ace687843d5be683 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-f21df5729a01fd2670022ff2ec728021d70f3853abd51c7d4ace687843d5be683 |
container_end_page | |
container_issue | 5 |
container_start_page | 2857 |
container_title | Applied sciences |
container_volume | 13 |
creator | Ma, Junqing Jiang, Xingxing Han, Baokun Wang, Jinrui Zhang, Zongzhen Bao, Huaiqian |
description | Existing generative adversarial networks (GAN) have potential in data augmentation and in the intelligent fault diagnosis of bearings. However, most relevant studies only focus on the fault diagnosis of rotating machines with sufficient fault-type samples, and some rare fault-type samples may be missing in training in practical engineering. To address those deficiencies, this paper presents an intelligent fault diagnosis method based on the dynamic simulation model and Wasserstein generative adversarial network with gradient normalization (WGAN-GN). The dynamic simulation model of bearing faults is constructed to obtaining simulation signals to replace and complement the missing fault samples, which are combined with the measured signals as training data and then input into the proposed WGAN-GN model for expanding and enhancing the data. To test the effectiveness of the simulated samples, a fault classification model constructed by stacked autoencoders (SAE) is used to classify the enhanced dataset. According to the results, the proposed model performs well when used to diagnose faults under missing samples and is preferable to other methods. |
doi_str_mv | 10.3390/app13052857 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_09aeae251a1c43fc9c60305e0c44d9c7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751988474</galeid><doaj_id>oai_doaj_org_article_09aeae251a1c43fc9c60305e0c44d9c7</doaj_id><sourcerecordid>A751988474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-f21df5729a01fd2670022ff2ec728021d70f3853abd51c7d4ace687843d5be683</originalsourceid><addsrcrecordid>eNpNUU1PGzEQXVWtVEQ59Q9Y4lgt-DP2HikpFImoB-jZGuxxcLSxt_Zupfx7DKkqZg7z9d7TaKbrvjJ6IcRAL2GamKCKG6U_dCec6lUvJNMf3-Wfu7Nad7TZwIRh9KRz60OCfXTkIe6XEeaYE9lkj2O_LvEvJnIDyziTdYRtyjVWssH5OXsSciHfEUpMW7Ikj4VsYq2v1RuhfzxMSB5gP41Yv3SfAowVz_7F0-73zY_H65_9_a_bu-ur-95JKuY-cOaD0nwAyoLnK00p5yFwdJob2oaaBmGUgCevmNNegsOV0UYKr55aJk67u6Ouz7CzU4l7KAebIdq3Ri5bC2WObkRLB0BArhgwJ0Vwg1vRdjukTko_ON20zo9aU8l_Fqyz3eWlpLa-5dooZqQZaENdHFFbaKIxhTwXcM09tpvmhCG2_pVWbDBGatkI344EV3KtBcP_NRm1r1-0774oXgAjz45D</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785184890</pqid></control><display><type>article</type><title>Dynamic Simulation Model-Driven Fault Diagnosis Method for Bearing under Missing Fault-Type Samples</title><source>Access via ProQuest (Open Access)</source><creator>Ma, Junqing ; Jiang, Xingxing ; Han, Baokun ; Wang, Jinrui ; Zhang, Zongzhen ; Bao, Huaiqian</creator><creatorcontrib>Ma, Junqing ; Jiang, Xingxing ; Han, Baokun ; Wang, Jinrui ; Zhang, Zongzhen ; Bao, Huaiqian</creatorcontrib><description>Existing generative adversarial networks (GAN) have potential in data augmentation and in the intelligent fault diagnosis of bearings. However, most relevant studies only focus on the fault diagnosis of rotating machines with sufficient fault-type samples, and some rare fault-type samples may be missing in training in practical engineering. To address those deficiencies, this paper presents an intelligent fault diagnosis method based on the dynamic simulation model and Wasserstein generative adversarial network with gradient normalization (WGAN-GN). The dynamic simulation model of bearing faults is constructed to obtaining simulation signals to replace and complement the missing fault samples, which are combined with the measured signals as training data and then input into the proposed WGAN-GN model for expanding and enhancing the data. To test the effectiveness of the simulated samples, a fault classification model constructed by stacked autoencoders (SAE) is used to classify the enhanced dataset. According to the results, the proposed model performs well when used to diagnose faults under missing samples and is preferable to other methods.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13052857</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Computer simulation ; Computer-generated environments ; Data augmentation ; Datasets ; dynamic simulation ; Fault diagnosis ; generative adversarial networks ; gradient normalization ; Liquors ; Machinery ; Methods ; missing samples ; Simulation ; Simulation models</subject><ispartof>Applied sciences, 2023-03, Vol.13 (5), p.2857</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-f21df5729a01fd2670022ff2ec728021d70f3853abd51c7d4ace687843d5be683</citedby><cites>FETCH-LOGICAL-c403t-f21df5729a01fd2670022ff2ec728021d70f3853abd51c7d4ace687843d5be683</cites><orcidid>0000-0003-2987-6930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2785184890/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2785184890?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Ma, Junqing</creatorcontrib><creatorcontrib>Jiang, Xingxing</creatorcontrib><creatorcontrib>Han, Baokun</creatorcontrib><creatorcontrib>Wang, Jinrui</creatorcontrib><creatorcontrib>Zhang, Zongzhen</creatorcontrib><creatorcontrib>Bao, Huaiqian</creatorcontrib><title>Dynamic Simulation Model-Driven Fault Diagnosis Method for Bearing under Missing Fault-Type Samples</title><title>Applied sciences</title><description>Existing generative adversarial networks (GAN) have potential in data augmentation and in the intelligent fault diagnosis of bearings. However, most relevant studies only focus on the fault diagnosis of rotating machines with sufficient fault-type samples, and some rare fault-type samples may be missing in training in practical engineering. To address those deficiencies, this paper presents an intelligent fault diagnosis method based on the dynamic simulation model and Wasserstein generative adversarial network with gradient normalization (WGAN-GN). The dynamic simulation model of bearing faults is constructed to obtaining simulation signals to replace and complement the missing fault samples, which are combined with the measured signals as training data and then input into the proposed WGAN-GN model for expanding and enhancing the data. To test the effectiveness of the simulated samples, a fault classification model constructed by stacked autoencoders (SAE) is used to classify the enhanced dataset. According to the results, the proposed model performs well when used to diagnose faults under missing samples and is preferable to other methods.</description><subject>Computer simulation</subject><subject>Computer-generated environments</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>dynamic simulation</subject><subject>Fault diagnosis</subject><subject>generative adversarial networks</subject><subject>gradient normalization</subject><subject>Liquors</subject><subject>Machinery</subject><subject>Methods</subject><subject>missing samples</subject><subject>Simulation</subject><subject>Simulation models</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PGzEQXVWtVEQ59Q9Y4lgt-DP2HikpFImoB-jZGuxxcLSxt_Zupfx7DKkqZg7z9d7TaKbrvjJ6IcRAL2GamKCKG6U_dCec6lUvJNMf3-Wfu7Nad7TZwIRh9KRz60OCfXTkIe6XEeaYE9lkj2O_LvEvJnIDyziTdYRtyjVWssH5OXsSciHfEUpMW7Ikj4VsYq2v1RuhfzxMSB5gP41Yv3SfAowVz_7F0-73zY_H65_9_a_bu-ur-95JKuY-cOaD0nwAyoLnK00p5yFwdJob2oaaBmGUgCevmNNegsOV0UYKr55aJk67u6Ouz7CzU4l7KAebIdq3Ri5bC2WObkRLB0BArhgwJ0Vwg1vRdjukTko_ON20zo9aU8l_Fqyz3eWlpLa-5dooZqQZaENdHFFbaKIxhTwXcM09tpvmhCG2_pVWbDBGatkI344EV3KtBcP_NRm1r1-0774oXgAjz45D</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Ma, Junqing</creator><creator>Jiang, Xingxing</creator><creator>Han, Baokun</creator><creator>Wang, Jinrui</creator><creator>Zhang, Zongzhen</creator><creator>Bao, Huaiqian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2987-6930</orcidid></search><sort><creationdate>20230301</creationdate><title>Dynamic Simulation Model-Driven Fault Diagnosis Method for Bearing under Missing Fault-Type Samples</title><author>Ma, Junqing ; Jiang, Xingxing ; Han, Baokun ; Wang, Jinrui ; Zhang, Zongzhen ; Bao, Huaiqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-f21df5729a01fd2670022ff2ec728021d70f3853abd51c7d4ace687843d5be683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer simulation</topic><topic>Computer-generated environments</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>dynamic simulation</topic><topic>Fault diagnosis</topic><topic>generative adversarial networks</topic><topic>gradient normalization</topic><topic>Liquors</topic><topic>Machinery</topic><topic>Methods</topic><topic>missing samples</topic><topic>Simulation</topic><topic>Simulation models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Junqing</creatorcontrib><creatorcontrib>Jiang, Xingxing</creatorcontrib><creatorcontrib>Han, Baokun</creatorcontrib><creatorcontrib>Wang, Jinrui</creatorcontrib><creatorcontrib>Zhang, Zongzhen</creatorcontrib><creatorcontrib>Bao, Huaiqian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Junqing</au><au>Jiang, Xingxing</au><au>Han, Baokun</au><au>Wang, Jinrui</au><au>Zhang, Zongzhen</au><au>Bao, Huaiqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Simulation Model-Driven Fault Diagnosis Method for Bearing under Missing Fault-Type Samples</atitle><jtitle>Applied sciences</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>13</volume><issue>5</issue><spage>2857</spage><pages>2857-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Existing generative adversarial networks (GAN) have potential in data augmentation and in the intelligent fault diagnosis of bearings. However, most relevant studies only focus on the fault diagnosis of rotating machines with sufficient fault-type samples, and some rare fault-type samples may be missing in training in practical engineering. To address those deficiencies, this paper presents an intelligent fault diagnosis method based on the dynamic simulation model and Wasserstein generative adversarial network with gradient normalization (WGAN-GN). The dynamic simulation model of bearing faults is constructed to obtaining simulation signals to replace and complement the missing fault samples, which are combined with the measured signals as training data and then input into the proposed WGAN-GN model for expanding and enhancing the data. To test the effectiveness of the simulated samples, a fault classification model constructed by stacked autoencoders (SAE) is used to classify the enhanced dataset. According to the results, the proposed model performs well when used to diagnose faults under missing samples and is preferable to other methods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13052857</doi><orcidid>https://orcid.org/0000-0003-2987-6930</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2023-03, Vol.13 (5), p.2857 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_09aeae251a1c43fc9c60305e0c44d9c7 |
source | Access via ProQuest (Open Access) |
subjects | Computer simulation Computer-generated environments Data augmentation Datasets dynamic simulation Fault diagnosis generative adversarial networks gradient normalization Liquors Machinery Methods missing samples Simulation Simulation models |
title | Dynamic Simulation Model-Driven Fault Diagnosis Method for Bearing under Missing Fault-Type Samples |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Simulation%20Model-Driven%20Fault%20Diagnosis%20Method%20for%20Bearing%20under%20Missing%20Fault-Type%20Samples&rft.jtitle=Applied%20sciences&rft.au=Ma,%20Junqing&rft.date=2023-03-01&rft.volume=13&rft.issue=5&rft.spage=2857&rft.pages=2857-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13052857&rft_dat=%3Cgale_doaj_%3EA751988474%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-f21df5729a01fd2670022ff2ec728021d70f3853abd51c7d4ace687843d5be683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2785184890&rft_id=info:pmid/&rft_galeid=A751988474&rfr_iscdi=true |