Loading…

Oxidative stress delays development and alters gene expression in the agricultural pest moth, Helicoverpa armigera

Stress is a widespread phenomenon that all organisms must endure. Common in nature is oxidative stress, which can interrupt cell homeostasis to cause cell damage and may be derived from respiration or from environmental exposure through diet. As a result of the routine exposure from respiration, man...

Full description

Saved in:
Bibliographic Details
Published in:Ecology and evolution 2020-06, Vol.10 (12), p.5680-5693
Main Authors: Apirajkamol, Nonthakorn (Beatrice), James, Bill, Gordon, Karl H. J., Walsh, Tom K., McGaughran, Angela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stress is a widespread phenomenon that all organisms must endure. Common in nature is oxidative stress, which can interrupt cell homeostasis to cause cell damage and may be derived from respiration or from environmental exposure through diet. As a result of the routine exposure from respiration, many organisms can mitigate the effects of oxidative stress, but less is known about responses to oxidative stress from other sources. Helicoverpa armigera is a major agricultural pest moth that causes significant damage to crops worldwide. Here, we examined the effects of oxidative stress on H. armigera by chronically exposing individuals to paraquat—a free radical producer—and measuring changes in development (weight, developmental rate, lifespan), and gene expression. We found that oxidative stress strongly affected development in H. armigera, with stressed samples spending more time as caterpillars than control samples (>24 vs. ~15 days, respectively) and therefore living longer overall. We found 1,618 up‐ and 761 down‐regulated genes, respectively, in stressed versus control samples. In the up‐regulated gene set, was an over‐representation of biological processes related to cuticle and chitin development, glycine metabolism, and oxidation–reduction. Oxidative stress clearly impacts physiology and biochemistry in H. armigera and the interesting finding of an extended lifespan in stressed individuals could demonstrate hormesis, the phenomenon whereby toxic compounds can actually be beneficial at low doses. Collectively, our findings provide new insights into physiological and gene expression responses to oxidative stress in invertebrates. We examine the effects of oxidative stress on a global pest moth and find that stressed samples show extended development and changes in gene expression that relate to key physiological and processes.
ISSN:2045-7758
2045-7758
DOI:10.1002/ece3.6308