Loading…

CIST: An Improved ISAR Imaging Method Using Convolution Neural Network

Compressive sensing (CS) has been widely utilized in inverse synthetic aperture radar (ISAR) imaging, since ISAR measured data are generally non-completed in cross-range direction, and CS-based imaging methods can obtain high-quality imaging results using under-sampled data. However, the traditional...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2020-08, Vol.12 (16), p.2641
Main Authors: Wei, Shunjun, Liang, Jiadian, Wang, Mou, Zeng, Xiangfeng, Shi, Jun, Zhang, Xiaoling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Compressive sensing (CS) has been widely utilized in inverse synthetic aperture radar (ISAR) imaging, since ISAR measured data are generally non-completed in cross-range direction, and CS-based imaging methods can obtain high-quality imaging results using under-sampled data. However, the traditional CS-based methods need to pre-define parameters and sparse transforms, which are tough to be hand-crafted. Besides, these methods usually require heavy computational cost with large matrices operation. In this paper, inspired by the adaptive parameter learning and rapidly reconstruction of convolution neural network (CNN), a novel imaging method, called convolution iterative shrinkage-thresholding (CIST) network, is proposed for ISAR efficient sparse imaging. CIST is capable of learning optimal parameters and sparse transforms throughout the CNN training process, instead of being manually defined. Specifically, CIST replaces the linear sparse transform with non-linear convolution operations. This new transform and essential parameters are learnable end-to-end across the iterations, which increases the flexibility and robustness of CIST. When compared with the traditional state-of-the-art CS imaging methods, both simulation and experimental results demonstrate that the proposed CIST-based ISAR imaging method can obtain imaging results of high quality, while maintaining high computational efficiency. CIST-based ISAR imaging is tens of times faster than other methods.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12162641