Loading…

Assessment of experimental OpenCV tracking algorithms for ultrasound videos

This study aims to compare the tracking algorithms provided by the OpenCV library to use on ultrasound video. Despite the widespread application of this computer vision library, few works describe the attempts to use it to track the movement of liver tumors on ultrasound video. Movements of the neop...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2023-04, Vol.13 (1), p.6765-6765, Article 6765
Main Authors: Levin, A. A., Klimov, D. D., Nechunaev, A. A., Prokhorenko, L. S., Mishchenkov, D. S., Nosova, A. G., Astakhov, D. A., Poduraev, Y. V., Panchenkov, D. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-bc9e1938ad88827515ad204049e0e4665009ff8ba4b0128ac92f22f78b9345153
cites cdi_FETCH-LOGICAL-c541t-bc9e1938ad88827515ad204049e0e4665009ff8ba4b0128ac92f22f78b9345153
container_end_page 6765
container_issue 1
container_start_page 6765
container_title Scientific reports
container_volume 13
creator Levin, A. A.
Klimov, D. D.
Nechunaev, A. A.
Prokhorenko, L. S.
Mishchenkov, D. S.
Nosova, A. G.
Astakhov, D. A.
Poduraev, Y. V.
Panchenkov, D. N.
description This study aims to compare the tracking algorithms provided by the OpenCV library to use on ultrasound video. Despite the widespread application of this computer vision library, few works describe the attempts to use it to track the movement of liver tumors on ultrasound video. Movements of the neoplasms caused by the patient`s breath interfere with the positioning of the instruments during the process of biopsy and radio-frequency ablation. The main hypothesis of the experiment was that tracking neoplasms and correcting the position of the manipulator in case of using robotic-assisted surgery will allow positioning the instruments more precisely. Another goal of the experiment was to check if it is possible to ensure real-time tracking with at least 25 processed frames per second for standard definition video. OpenCV version 4.5.0 was used with 7 tracking algorithms from the extra modules package. They are: Boosting, CSRT, KCF, MedianFlow, MIL, MOSSE, TLD. More than 5600 frames of standard definition were processed during the experiment. Analysis of the results shows that two algorithms—CSRT and KCF—could solve the problem of tumor tracking. They lead the test with 70% and more of Intersection over Union and more than 85% successful searches. They could also be used in real-time processing with an average processing speed of up to frames per second in CSRT and 100 + frames per second for KCF. Tracking results reach the average deviation between centers of neoplasms to 2 mm and maximum deviation less than 5 mm. This experiment also shows that no frames made CSRT and KCF algorithms fail simultaneously. So, the hypothesis for future work is combining these algorithms to work together, with one of them—CSRT—as support for the KCF tracker on the rarely failed frames.
doi_str_mv 10.1038/s41598-023-30930-3
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0da51bf5303f4e7e9782147471c05e2d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0da51bf5303f4e7e9782147471c05e2d</doaj_id><sourcerecordid>2805771846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-bc9e1938ad88827515ad204049e0e4665009ff8ba4b0128ac92f22f78b9345153</originalsourceid><addsrcrecordid>eNp9kctu1TAQhq0K1FZtX4AFisSGTej4dmyvUHVUoKJSN8DWcpxxmkNOfLCTCt4etym9LfDGl_nm98z8hLyh8IEC16dZUGl0DYzXHAyHmu-RQwZC1owz9urJ-YCc5LyBsiQzgpp9csAV1ZJpeki-nuWMOW9xnKoYKvy9w9Tf3txQXe1wXP-opuT8z37sKjd0MfXT9TZXIaZqHkokx3lsq5u-xZiPyevghown9_sR-f7p_Nv6S3159flifXZZeynoVDfeIDVcu1ZrzZSk0rWlWBAGAcVqJQFMCLpxogHKtPOGBcaC0o3hotD8iFwsum10G7sr9br0x0bX27uHmDrr0tT7AS20TtImSA48CFRolGZUKKGoB4msLVofF63d3Gyx9aXz5IZnos8jY39tu3hjKVAOwFhReH-vkOKvGfNkt332OAxuxDhnW8YsJONGqIK-e4Fu4pzGMqtCgVTFFbEqFFson2LOCcNDNRTsrfd28d4W7-2d95aXpLdP-3hI-ed0AfgC5BIaO0yPf_9H9i9rtLiV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805771846</pqid></control><display><type>article</type><title>Assessment of experimental OpenCV tracking algorithms for ultrasound videos</title><source>PubMed Central(OpenAccess)</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Levin, A. A. ; Klimov, D. D. ; Nechunaev, A. A. ; Prokhorenko, L. S. ; Mishchenkov, D. S. ; Nosova, A. G. ; Astakhov, D. A. ; Poduraev, Y. V. ; Panchenkov, D. N.</creator><creatorcontrib>Levin, A. A. ; Klimov, D. D. ; Nechunaev, A. A. ; Prokhorenko, L. S. ; Mishchenkov, D. S. ; Nosova, A. G. ; Astakhov, D. A. ; Poduraev, Y. V. ; Panchenkov, D. N.</creatorcontrib><description>This study aims to compare the tracking algorithms provided by the OpenCV library to use on ultrasound video. Despite the widespread application of this computer vision library, few works describe the attempts to use it to track the movement of liver tumors on ultrasound video. Movements of the neoplasms caused by the patient`s breath interfere with the positioning of the instruments during the process of biopsy and radio-frequency ablation. The main hypothesis of the experiment was that tracking neoplasms and correcting the position of the manipulator in case of using robotic-assisted surgery will allow positioning the instruments more precisely. Another goal of the experiment was to check if it is possible to ensure real-time tracking with at least 25 processed frames per second for standard definition video. OpenCV version 4.5.0 was used with 7 tracking algorithms from the extra modules package. They are: Boosting, CSRT, KCF, MedianFlow, MIL, MOSSE, TLD. More than 5600 frames of standard definition were processed during the experiment. Analysis of the results shows that two algorithms—CSRT and KCF—could solve the problem of tumor tracking. They lead the test with 70% and more of Intersection over Union and more than 85% successful searches. They could also be used in real-time processing with an average processing speed of up to frames per second in CSRT and 100 + frames per second for KCF. Tracking results reach the average deviation between centers of neoplasms to 2 mm and maximum deviation less than 5 mm. This experiment also shows that no frames made CSRT and KCF algorithms fail simultaneously. So, the hypothesis for future work is combining these algorithms to work together, with one of them—CSRT—as support for the KCF tracker on the rarely failed frames.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-023-30930-3</identifier><identifier>PMID: 37185281</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/985 ; 692/4028/546 ; Algorithms ; Biopsy ; Computer vision ; Computers ; Experiments ; Humanities and Social Sciences ; Humans ; Hypotheses ; Movement ; multidisciplinary ; Robotic surgery ; Robotic Surgical Procedures ; Science ; Science (multidisciplinary) ; Tumors ; Ultrasonic imaging ; Ultrasound</subject><ispartof>Scientific reports, 2023-04, Vol.13 (1), p.6765-6765, Article 6765</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-bc9e1938ad88827515ad204049e0e4665009ff8ba4b0128ac92f22f78b9345153</citedby><cites>FETCH-LOGICAL-c541t-bc9e1938ad88827515ad204049e0e4665009ff8ba4b0128ac92f22f78b9345153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2805771846/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2805771846?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37185281$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Levin, A. A.</creatorcontrib><creatorcontrib>Klimov, D. D.</creatorcontrib><creatorcontrib>Nechunaev, A. A.</creatorcontrib><creatorcontrib>Prokhorenko, L. S.</creatorcontrib><creatorcontrib>Mishchenkov, D. S.</creatorcontrib><creatorcontrib>Nosova, A. G.</creatorcontrib><creatorcontrib>Astakhov, D. A.</creatorcontrib><creatorcontrib>Poduraev, Y. V.</creatorcontrib><creatorcontrib>Panchenkov, D. N.</creatorcontrib><title>Assessment of experimental OpenCV tracking algorithms for ultrasound videos</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>This study aims to compare the tracking algorithms provided by the OpenCV library to use on ultrasound video. Despite the widespread application of this computer vision library, few works describe the attempts to use it to track the movement of liver tumors on ultrasound video. Movements of the neoplasms caused by the patient`s breath interfere with the positioning of the instruments during the process of biopsy and radio-frequency ablation. The main hypothesis of the experiment was that tracking neoplasms and correcting the position of the manipulator in case of using robotic-assisted surgery will allow positioning the instruments more precisely. Another goal of the experiment was to check if it is possible to ensure real-time tracking with at least 25 processed frames per second for standard definition video. OpenCV version 4.5.0 was used with 7 tracking algorithms from the extra modules package. They are: Boosting, CSRT, KCF, MedianFlow, MIL, MOSSE, TLD. More than 5600 frames of standard definition were processed during the experiment. Analysis of the results shows that two algorithms—CSRT and KCF—could solve the problem of tumor tracking. They lead the test with 70% and more of Intersection over Union and more than 85% successful searches. They could also be used in real-time processing with an average processing speed of up to frames per second in CSRT and 100 + frames per second for KCF. Tracking results reach the average deviation between centers of neoplasms to 2 mm and maximum deviation less than 5 mm. This experiment also shows that no frames made CSRT and KCF algorithms fail simultaneously. So, the hypothesis for future work is combining these algorithms to work together, with one of them—CSRT—as support for the KCF tracker on the rarely failed frames.</description><subject>639/166/985</subject><subject>692/4028/546</subject><subject>Algorithms</subject><subject>Biopsy</subject><subject>Computer vision</subject><subject>Computers</subject><subject>Experiments</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Movement</subject><subject>multidisciplinary</subject><subject>Robotic surgery</subject><subject>Robotic Surgical Procedures</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Tumors</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctu1TAQhq0K1FZtX4AFisSGTej4dmyvUHVUoKJSN8DWcpxxmkNOfLCTCt4etym9LfDGl_nm98z8hLyh8IEC16dZUGl0DYzXHAyHmu-RQwZC1owz9urJ-YCc5LyBsiQzgpp9csAV1ZJpeki-nuWMOW9xnKoYKvy9w9Tf3txQXe1wXP-opuT8z37sKjd0MfXT9TZXIaZqHkokx3lsq5u-xZiPyevghown9_sR-f7p_Nv6S3159flifXZZeynoVDfeIDVcu1ZrzZSk0rWlWBAGAcVqJQFMCLpxogHKtPOGBcaC0o3hotD8iFwsum10G7sr9br0x0bX27uHmDrr0tT7AS20TtImSA48CFRolGZUKKGoB4msLVofF63d3Gyx9aXz5IZnos8jY39tu3hjKVAOwFhReH-vkOKvGfNkt332OAxuxDhnW8YsJONGqIK-e4Fu4pzGMqtCgVTFFbEqFFson2LOCcNDNRTsrfd28d4W7-2d95aXpLdP-3hI-ed0AfgC5BIaO0yPf_9H9i9rtLiV</recordid><startdate>20230425</startdate><enddate>20230425</enddate><creator>Levin, A. A.</creator><creator>Klimov, D. D.</creator><creator>Nechunaev, A. A.</creator><creator>Prokhorenko, L. S.</creator><creator>Mishchenkov, D. S.</creator><creator>Nosova, A. G.</creator><creator>Astakhov, D. A.</creator><creator>Poduraev, Y. V.</creator><creator>Panchenkov, D. N.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230425</creationdate><title>Assessment of experimental OpenCV tracking algorithms for ultrasound videos</title><author>Levin, A. A. ; Klimov, D. D. ; Nechunaev, A. A. ; Prokhorenko, L. S. ; Mishchenkov, D. S. ; Nosova, A. G. ; Astakhov, D. A. ; Poduraev, Y. V. ; Panchenkov, D. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-bc9e1938ad88827515ad204049e0e4665009ff8ba4b0128ac92f22f78b9345153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/166/985</topic><topic>692/4028/546</topic><topic>Algorithms</topic><topic>Biopsy</topic><topic>Computer vision</topic><topic>Computers</topic><topic>Experiments</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Movement</topic><topic>multidisciplinary</topic><topic>Robotic surgery</topic><topic>Robotic Surgical Procedures</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Tumors</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levin, A. A.</creatorcontrib><creatorcontrib>Klimov, D. D.</creatorcontrib><creatorcontrib>Nechunaev, A. A.</creatorcontrib><creatorcontrib>Prokhorenko, L. S.</creatorcontrib><creatorcontrib>Mishchenkov, D. S.</creatorcontrib><creatorcontrib>Nosova, A. G.</creatorcontrib><creatorcontrib>Astakhov, D. A.</creatorcontrib><creatorcontrib>Poduraev, Y. V.</creatorcontrib><creatorcontrib>Panchenkov, D. N.</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levin, A. A.</au><au>Klimov, D. D.</au><au>Nechunaev, A. A.</au><au>Prokhorenko, L. S.</au><au>Mishchenkov, D. S.</au><au>Nosova, A. G.</au><au>Astakhov, D. A.</au><au>Poduraev, Y. V.</au><au>Panchenkov, D. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of experimental OpenCV tracking algorithms for ultrasound videos</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2023-04-25</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>6765</spage><epage>6765</epage><pages>6765-6765</pages><artnum>6765</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>This study aims to compare the tracking algorithms provided by the OpenCV library to use on ultrasound video. Despite the widespread application of this computer vision library, few works describe the attempts to use it to track the movement of liver tumors on ultrasound video. Movements of the neoplasms caused by the patient`s breath interfere with the positioning of the instruments during the process of biopsy and radio-frequency ablation. The main hypothesis of the experiment was that tracking neoplasms and correcting the position of the manipulator in case of using robotic-assisted surgery will allow positioning the instruments more precisely. Another goal of the experiment was to check if it is possible to ensure real-time tracking with at least 25 processed frames per second for standard definition video. OpenCV version 4.5.0 was used with 7 tracking algorithms from the extra modules package. They are: Boosting, CSRT, KCF, MedianFlow, MIL, MOSSE, TLD. More than 5600 frames of standard definition were processed during the experiment. Analysis of the results shows that two algorithms—CSRT and KCF—could solve the problem of tumor tracking. They lead the test with 70% and more of Intersection over Union and more than 85% successful searches. They could also be used in real-time processing with an average processing speed of up to frames per second in CSRT and 100 + frames per second for KCF. Tracking results reach the average deviation between centers of neoplasms to 2 mm and maximum deviation less than 5 mm. This experiment also shows that no frames made CSRT and KCF algorithms fail simultaneously. So, the hypothesis for future work is combining these algorithms to work together, with one of them—CSRT—as support for the KCF tracker on the rarely failed frames.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37185281</pmid><doi>10.1038/s41598-023-30930-3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2023-04, Vol.13 (1), p.6765-6765, Article 6765
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0da51bf5303f4e7e9782147471c05e2d
source PubMed Central(OpenAccess); Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166/985
692/4028/546
Algorithms
Biopsy
Computer vision
Computers
Experiments
Humanities and Social Sciences
Humans
Hypotheses
Movement
multidisciplinary
Robotic surgery
Robotic Surgical Procedures
Science
Science (multidisciplinary)
Tumors
Ultrasonic imaging
Ultrasound
title Assessment of experimental OpenCV tracking algorithms for ultrasound videos
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20experimental%20OpenCV%20tracking%20algorithms%20for%20ultrasound%20videos&rft.jtitle=Scientific%20reports&rft.au=Levin,%20A.%20A.&rft.date=2023-04-25&rft.volume=13&rft.issue=1&rft.spage=6765&rft.epage=6765&rft.pages=6765-6765&rft.artnum=6765&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-023-30930-3&rft_dat=%3Cproquest_doaj_%3E2805771846%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-bc9e1938ad88827515ad204049e0e4665009ff8ba4b0128ac92f22f78b9345153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2805771846&rft_id=info:pmid/37185281&rfr_iscdi=true