Loading…
Long-term behavior of a cyclic max-type system of difference equations
We study the long-term behavior of positive solutions of the cyclic system of difference equations $$ x^{(i)}_{n+1}=\max\Big\{\alpha,\frac{(x^{(i+1)}_n)^p}{(x^{(i+2)}_{n-1})^q}\Big\}, \quad i=1,\ldots,k,\; n\in\mathbb{N}_0, $$ where $k\in\mathbb{N}$, $\min\{\alpha, p, q\}>0$ and where we regard t...
Saved in:
Published in: | Electronic journal of differential equations 2015-09, Vol.2015 (234), p.1-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the long-term behavior of positive solutions of the cyclic system of difference equations $$ x^{(i)}_{n+1}=\max\Big\{\alpha,\frac{(x^{(i+1)}_n)^p}{(x^{(i+2)}_{n-1})^q}\Big\}, \quad i=1,\ldots,k,\; n\in\mathbb{N}_0, $$ where $k\in\mathbb{N}$, $\min\{\alpha, p, q\}>0$ and where we regard that $x^{(i_1)}_n=x^{(i_2)}_n$ when $i_1\equiv i_2$ (mod $k$). We determine the set of parameters $\alpha$, p and q in $(0,\infty)^3$ for which all such solutions are bounded. In the other cases we show that the system has unbounded solutions. For the case p=q we give some sufficient conditions which guaranty the convergence of all positive solutions. The main results in this paper generalize and complement some recent ones. |
---|---|
ISSN: | 1072-6691 |