Loading…

Ultrasonographic modeling of lung and diaphragm mechanics: clinical trial of a novel non-invasive method to evaluate pre-operative pulmonary function

Pre-operative pulmonary function testing (PFT) plays a key role in predicting postoperative complications or functional impairment. However, PFT requires the subject and examiner to cooperate and the results are influenced by both technical and personal factors. In contrast, the use of ultrasound (U...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ (San Francisco, CA) CA), 2024-12, Vol.12, p.e18677, Article e18677
Main Authors: Li, Tianyuan, Wu, Xiong-Zhi, Long, Dingde, Fu, Huan, Guo, Suping, Liu, Fen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pre-operative pulmonary function testing (PFT) plays a key role in predicting postoperative complications or functional impairment. However, PFT requires the subject and examiner to cooperate and the results are influenced by both technical and personal factors. In contrast, the use of ultrasound (US) for structural and functional assessments of the lungs and diaphragm is on the rise, as it requires minimal patient cooperation. Dyspnea is mainly caused by lung or pleural lesions but may also be caused by weak respiratory muscles. As the diaphragm is a primary respiratory muscle, combining lung ultrasonography (LUS) with diaphragm ultrasound (DUS) may enable a more comprehensive assessement of pulmonary function. This study aims to introduce a novel approach for assessing pulmonary function using a mathematical model based on LUS and DUS. This prospective study was performed at the First Affiliated Hospital of Nanchang University between June 2021 and December 2021, 208 patients were recruited and underwent PFT, LUS, and DUS examinations. An experienced physician, blinded to the clinical history and PFT results, performed LUS and DUS and explored the correlations between a mathematical model (ultrasonographic modeling score (U-score)) using LUS combined with DUS and pulmonary function parameters. Univariate, multivariate, and logistic regression analyses were also performed. According to the univariate and multivariable analysis, diaphragm thickness fraction in deep breathing (D-DTF) (odds ratio (OR), 0.88; 95% confidence interval (CI) [0.83-0.94]; < 0.001), and LUS score (OR, 1.44; 95% CI [1.16-1.80]; < 0.001) were each independently associated with pulmonary function. According to the logistics equation, a U-score of -0.126 × D-DTF + 0.368 × LUS score was produced. The U-score showed a more significant negative correlation with forced expiratory volume in the first second/forced vital capacity (FEV1/FVC) (r = -0.605, < 0.001) than the LUS or DUS indices alone. The U-score (area under the curve (AUC) = 0.971) was greater than the other indices for assessing pulmonary function. With validation, the U-score through both lung and diaphragm ultrasound measurements may assist in estimating pulmonary function. This approach facilitates the assessment of pulmonary function in patients who may be unable to reliably participate in PFT.
ISSN:2167-8359
2167-8359
DOI:10.7717/peerj.18677