Loading…
Assessment of Different Boundary Layer Parameterization Schemes in Numerical Simulations of Typhoon Nida (2016) Based on Aircraft Observations
This study aimed to find a boundary layer parameter scheme suitable for typhoons in the South China Sea based on a comparison with the aircraft detection data from Typhoon Nida (2016). We simulated the typhoon boundary layer wind field in different boundary layer schemes, such as YSU, MYNN, BouLac,...
Saved in:
Published in: | Atmosphere 2023-09, Vol.14 (9), p.1403 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study aimed to find a boundary layer parameter scheme suitable for typhoons in the South China Sea based on a comparison with the aircraft detection data from Typhoon Nida (2016). We simulated the typhoon boundary layer wind field in different boundary layer schemes, such as YSU, MYNN, BouLac, and Shin-Hong, and with a no-boundary-layer parametrization scheme. The results were as follows: (1) In the eye and eyewall area, the YSU and MYNN schemes could better simulate the east–west wind characteristics and the YSU scheme could also simulate the jet current of the southerly wind component in the boundary layer in the eyewall. (2) Compared with the eye area, the easterly wind in the eyewall area was strong, and the overall vertical movement was weak. (3) The YSU and MYNN schemes had similar turbulent kinetic energies that were also similar to those from aircraft observations; the turbulent kinetic energy in the simulations of several schemes in the boundary layer was evidently lower than that in the aircraft observations. Thus, the MYNN and the YSU schemes yielded better simulations for the eye and eyewall areas, and the YSU scheme was more similar to the boundary layer observations. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos14091403 |