Loading…

A New Single-Valued Neutrosophic Rough Sets and Related Topology

(Fuzzy) rough sets are closely related to (fuzzy) topologies. Neutrosophic rough sets and neutrosophic topologies are extensions of (fuzzy) rough sets and (fuzzy) topologies, respectively. In this paper, a new type of neutrosophic rough sets is presented, and the basic properties and the relationshi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematics (Hidawi) 2021-07, Vol.2021, p.1-14
Main Authors: Jin, Qiu, Hu, Kai, Bo, Chunxin, Li, Lingqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:(Fuzzy) rough sets are closely related to (fuzzy) topologies. Neutrosophic rough sets and neutrosophic topologies are extensions of (fuzzy) rough sets and (fuzzy) topologies, respectively. In this paper, a new type of neutrosophic rough sets is presented, and the basic properties and the relationships to neutrosophic topology are discussed. The main results include the following: (1) For a single-valued neutrosophic approximation space U,R, a pair of approximation operators called the upper and lower ordinary single-valued neutrosophic approximation operators are defined and their properties are discussed. Then the further properties of the proposed approximation operators corresponding to reflexive (transitive) single-valued neutrosophic approximation space are explored. (2) It is verified that the single-valued neutrosophic approximation spaces and the ordinary single-valued neutrosophic topological spaces can be interrelated to each other through our defined lower approximation operator. Particularly, there is a one-to-one correspondence between reflexive, transitive single-valued neutrosophic approximation spaces and quasidiscrete ordinary single-valued neutrosophic topological spaces.
ISSN:2314-4629
2314-4785
DOI:10.1155/2021/5522021