Loading…

Novel, cold-adapted D-laminaribiose- and D-glucose-releasing GH16 endo-β-1,3-glucanase from Hymenobacter siberiensis PAMC 29290, a psychrotolerant bacterium from Arctic marine sediment

Endo-β-1,3-glucanase is a glycoside hydrolase (GH) that plays an essential role in the mineralization of β-glucan polysaccharides. In this study, the novel gene encoding an extracellular, non-modular GH16 endo-β-1,3-glucanase (GluH) from PAMC 29290 isolated from Arctic marine sediment was discovered...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in microbiology 2024-10, Vol.15, p.1470106
Main Authors: Kim, Do Young, Lee, Yung Mi, Lee, Jong Suk, Chung, Chung-Wook, Son, Kwang-Hee
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Endo-β-1,3-glucanase is a glycoside hydrolase (GH) that plays an essential role in the mineralization of β-glucan polysaccharides. In this study, the novel gene encoding an extracellular, non-modular GH16 endo-β-1,3-glucanase (GluH) from PAMC 29290 isolated from Arctic marine sediment was discovered through an analysis of its whole genome sequence and subsequently overexpressed in BL21. The 870-bp GluH gene encoded a protein featuring a single catalytic GH16 domain that shared over 61% sequence identity with uncharacterized endo-β-1,3-glucanases from diverse species, as recorded in the National Center for Biotechnology Information database. The purified recombinant endo-β-1,3-glucanase (rGluH: 31.0 kDa) demonstrated peak activity on laminarin at pH 5.5 and 40°C, maintaining over 40% of its maximum endo-β-1,3-glucanase activity even at 25°C. rGluH preferentially hydrolyzed D-laminarioligosaccharides and β-1,3-linked polysaccharides, but did not degrade D-laminaribiose or structurally unrelated substrates, confirming its specificity as a true endo-β-1,3-glucanase without ancillary GH activities. The biodegradability of various substrate polymers by the enzyme was evaluated in the following sequence: laminarin > barley β-glucan > carboxymethyl-curdlan > curdlan > pachyman. Notably, the specific activity (253.1 U mg ) and catalytic efficiency ( / : 105.72 mg s mL) of rGluH for laminarin closely matched its specific activity (250.2 U mg ) and / value (104.88 mg s mL) toward barley β-glucan. However, the / value (9.86 mg s mL) of rGluH for insoluble curdlan was only about 9.3% of the value for laminarin, which correlates well with the observation that rGluH displayed weak binding affinity (< 40%) to the insoluble polymer. The biocatalytic hydrolysis of D-laminarioligosaccharides with a degree of polymerization between 3 and 6 and laminarin generally resulted in the formation of D-laminaribiose as the predominant product and D-glucose as the secondary product, with a ratio of approximately 4:1. These findings suggest that highly active rGluH is an acidic, cold-adapted D-laminaribiose- and D-glucose-releasing GH16 endo-β-1,3-glucanase, which can be exploited as a valuable biocatalyst for facilitating low temperature preservation of foods.
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2024.1470106