Loading…
All-Optical dc Nanotesla Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide
We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-SiC28 ) and reveal not yet considered terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3/2 color center. These terms give rise to additional spin transitions, wh...
Saved in:
Published in: | Physical review. X 2016-07, Vol.6 (3), p.031014, Article 031014 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-SiC28 ) and reveal not yet considered terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3/2 color center. These terms give rise to additional spin transitions, which would be otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity better than 100nT/Hz within a volume of 3×10−7mm3 at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radio-frequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3mm3 , the projection noise limit is below 100fT/Hz . |
---|---|
ISSN: | 2160-3308 2160-3308 |
DOI: | 10.1103/PhysRevX.6.031014 |