Loading…
Two-dimensional lead halide perovskite lateral homojunctions enabled by phase pinning
Two-dimensional organic-inorganic hybrid halide perovskites possess diverse structural polymorphs with versatile physical properties, which can be controlled by order-disorder transition of the spacer cation, making them attractive for constructing semiconductor homojunctions. Here, we demonstrate a...
Saved in:
Published in: | Nature communications 2024-04, Vol.15 (1), p.3164-3164, Article 3164 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two-dimensional organic-inorganic hybrid halide perovskites possess diverse structural polymorphs with versatile physical properties, which can be controlled by order-disorder transition of the spacer cation, making them attractive for constructing semiconductor homojunctions. Here, we demonstrate a space-cation-dopant-induced phase stabilization approach to creating a lateral homojunction composed of ordered and disordered phases within a two-dimensional perovskite. By doping a small quantity of pentylammonium into (butylammonium)
2
PbI
4
or vice versa, we effectively suppress the ordering transition of the spacer cation and the associated out-of-plane octahedral tilting in the inorganic framework, resulting in phase pining of the disordered phase when decreasing temperature or increasing pressure. This enables epitaxial growth of a two-dimensional perovskite homojunction with tunable optical properties under temperature and pressure stimuli, as well as directional exciton diffusion across the interface. Our results demonstrate a previously unexplored strategy for constructing two-dimensional perovskite heterostructures by thermodynamic tuning and spacer cation doping.
Hong et al. report 2D perovskite lateral homojunction consists of ordered and disordered phases, achieved by organic cation doping induced phase pinning, built upon which they develop tuneable optical properties under external stimuli and directional exciton diffusion in the homojunctions. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-47406-1 |