Loading…

Engineering artificial photosynthetic life-forms through endosymbiosis

The evolutionary origin of the photosynthetic eukaryotes drastically altered the evolution of complex lifeforms and impacted global ecology. The endosymbiotic theory suggests that photosynthetic eukaryotes evolved due to endosymbiosis between non-photosynthetic eukaryotic host cells and photosynthet...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-04, Vol.13 (1), p.2254-2254, Article 2254
Main Authors: Cournoyer, Jason E., Altman, Sarah D., Gao, Yang-le, Wallace, Catherine L., Zhang, Dianwen, Lo, Guo-Hsuen, Haskin, Noah T., Mehta, Angad P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-5af2728832ced5962e5ed642bb8f2add940c900838c9f6f18b37f8dfdd8484693
cites cdi_FETCH-LOGICAL-c606t-5af2728832ced5962e5ed642bb8f2add940c900838c9f6f18b37f8dfdd8484693
container_end_page 2254
container_issue 1
container_start_page 2254
container_title Nature communications
container_volume 13
creator Cournoyer, Jason E.
Altman, Sarah D.
Gao, Yang-le
Wallace, Catherine L.
Zhang, Dianwen
Lo, Guo-Hsuen
Haskin, Noah T.
Mehta, Angad P.
description The evolutionary origin of the photosynthetic eukaryotes drastically altered the evolution of complex lifeforms and impacted global ecology. The endosymbiotic theory suggests that photosynthetic eukaryotes evolved due to endosymbiosis between non-photosynthetic eukaryotic host cells and photosynthetic cyanobacterial or algal endosymbionts. The photosynthetic endosymbionts, propagating within the cytoplasm of the host cells, evolved, and eventually transformed into chloroplasts. Despite the fundamental importance of this evolutionary event, we have minimal understanding of this remarkable evolutionary transformation. Here, we design and engineer artificial, genetically tractable, photosynthetic endosymbiosis between photosynthetic cyanobacteria and budding yeasts. We engineer various mutants of model photosynthetic cyanobacteria as endosymbionts within yeast cells where, the engineered cyanobacteria perform bioenergetic functions to support the growth of yeast cells under defined photosynthetic conditions. We anticipate that these genetically tractable endosymbiotic platforms can be used for evolutionary studies, particularly related to organelle evolution, and also for synthetic biology applications. The endosymbiotic theory posits that chloroplasts in eukaryotes arise from bacterial endosymbionts. Here, the authors engineer the yeast/cyanobacteria chimeras and show that the engineered cyanobacteria perform chloroplast-like functions to support the growth of yeast cells under photosynthetic conditions.
doi_str_mv 10.1038/s41467-022-29961-7
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_11598293e32440e2b2f632b0c479fd65</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_11598293e32440e2b2f632b0c479fd65</doaj_id><sourcerecordid>2656201658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-5af2728832ced5962e5ed642bb8f2add940c900838c9f6f18b37f8dfdd8484693</originalsourceid><addsrcrecordid>eNp9kUtv1DAURi0EotXQP8ACRWLDJmBfP2JvkFDVQqVKbGBtOX4kHiXxYGeQ-u-bNKWvBd7Yss899vWH0HuCPxNM5ZfCCBNNjQFqUEqQunmFTgEzUpMG6Osn6xN0VsoeL4MqIhl7i04oZw3DQpyiy4upi5P3OU5dZfIcQ7TRDNWhT3MqN9Pc-znaaojB1yHlsVRzn9Ox6ys_uQUY25hKLO_Qm2CG4s_u5x36fXnx6_xHff3z-9X5t-vaCizmmpsADUhJwXrHlQDPvRMM2lYGMM4phq3CWFJpVRCByJY2QbrgnGSSCUV36GrzumT2-pDjaPKNTibqu42UO702YQevCeFKgqKeAmPYQwtBUGixZY0KTvDF9XVzHY7t6J3105zN8Ez6_GSKve7SX60wg9W8Q5_uBTn9Ofoy6zEW64fBTD4diwbBBWAiuFzQjy_QfTrmafmqleKUcqHwQsFG2ZxKyT48PIZgvaaut9T1krq-S103S9GHp208lPzLeAHoBpTDmrLPj3f_R3sLGBi4CQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655335690</pqid></control><display><type>article</type><title>Engineering artificial photosynthetic life-forms through endosymbiosis</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Cournoyer, Jason E. ; Altman, Sarah D. ; Gao, Yang-le ; Wallace, Catherine L. ; Zhang, Dianwen ; Lo, Guo-Hsuen ; Haskin, Noah T. ; Mehta, Angad P.</creator><creatorcontrib>Cournoyer, Jason E. ; Altman, Sarah D. ; Gao, Yang-le ; Wallace, Catherine L. ; Zhang, Dianwen ; Lo, Guo-Hsuen ; Haskin, Noah T. ; Mehta, Angad P.</creatorcontrib><description>The evolutionary origin of the photosynthetic eukaryotes drastically altered the evolution of complex lifeforms and impacted global ecology. The endosymbiotic theory suggests that photosynthetic eukaryotes evolved due to endosymbiosis between non-photosynthetic eukaryotic host cells and photosynthetic cyanobacterial or algal endosymbionts. The photosynthetic endosymbionts, propagating within the cytoplasm of the host cells, evolved, and eventually transformed into chloroplasts. Despite the fundamental importance of this evolutionary event, we have minimal understanding of this remarkable evolutionary transformation. Here, we design and engineer artificial, genetically tractable, photosynthetic endosymbiosis between photosynthetic cyanobacteria and budding yeasts. We engineer various mutants of model photosynthetic cyanobacteria as endosymbionts within yeast cells where, the engineered cyanobacteria perform bioenergetic functions to support the growth of yeast cells under defined photosynthetic conditions. We anticipate that these genetically tractable endosymbiotic platforms can be used for evolutionary studies, particularly related to organelle evolution, and also for synthetic biology applications. The endosymbiotic theory posits that chloroplasts in eukaryotes arise from bacterial endosymbionts. Here, the authors engineer the yeast/cyanobacteria chimeras and show that the engineered cyanobacteria perform chloroplast-like functions to support the growth of yeast cells under photosynthetic conditions.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-29961-7</identifier><identifier>PMID: 35474066</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/19 ; 14/34 ; 14/63 ; 42/70 ; 45/22 ; 45/44 ; 45/77 ; 631/1647/1511 ; 631/181/2475 ; 631/326/88 ; 631/553/552 ; Algae ; Biological Evolution ; Chimeras ; Chloroplasts ; Chloroplasts - genetics ; Cyanobacteria ; Cyanobacteria - genetics ; Cytoplasm ; Endosymbionts ; Engineers ; Eukaryotes ; Evolution ; Humanities and Social Sciences ; multidisciplinary ; Photosynthesis ; Photosynthesis - genetics ; Saccharomyces cerevisiae ; Science ; Science (multidisciplinary) ; Symbiosis - genetics ; Yeast ; Yeasts</subject><ispartof>Nature communications, 2022-04, Vol.13 (1), p.2254-2254, Article 2254</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-5af2728832ced5962e5ed642bb8f2add940c900838c9f6f18b37f8dfdd8484693</citedby><cites>FETCH-LOGICAL-c606t-5af2728832ced5962e5ed642bb8f2add940c900838c9f6f18b37f8dfdd8484693</cites><orcidid>0000-0003-2585-8268 ; 0000-0002-2170-6737 ; 0000-0002-9824-3953 ; 0000-0002-0385-0110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2655335690/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2655335690?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35474066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cournoyer, Jason E.</creatorcontrib><creatorcontrib>Altman, Sarah D.</creatorcontrib><creatorcontrib>Gao, Yang-le</creatorcontrib><creatorcontrib>Wallace, Catherine L.</creatorcontrib><creatorcontrib>Zhang, Dianwen</creatorcontrib><creatorcontrib>Lo, Guo-Hsuen</creatorcontrib><creatorcontrib>Haskin, Noah T.</creatorcontrib><creatorcontrib>Mehta, Angad P.</creatorcontrib><title>Engineering artificial photosynthetic life-forms through endosymbiosis</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The evolutionary origin of the photosynthetic eukaryotes drastically altered the evolution of complex lifeforms and impacted global ecology. The endosymbiotic theory suggests that photosynthetic eukaryotes evolved due to endosymbiosis between non-photosynthetic eukaryotic host cells and photosynthetic cyanobacterial or algal endosymbionts. The photosynthetic endosymbionts, propagating within the cytoplasm of the host cells, evolved, and eventually transformed into chloroplasts. Despite the fundamental importance of this evolutionary event, we have minimal understanding of this remarkable evolutionary transformation. Here, we design and engineer artificial, genetically tractable, photosynthetic endosymbiosis between photosynthetic cyanobacteria and budding yeasts. We engineer various mutants of model photosynthetic cyanobacteria as endosymbionts within yeast cells where, the engineered cyanobacteria perform bioenergetic functions to support the growth of yeast cells under defined photosynthetic conditions. We anticipate that these genetically tractable endosymbiotic platforms can be used for evolutionary studies, particularly related to organelle evolution, and also for synthetic biology applications. The endosymbiotic theory posits that chloroplasts in eukaryotes arise from bacterial endosymbionts. Here, the authors engineer the yeast/cyanobacteria chimeras and show that the engineered cyanobacteria perform chloroplast-like functions to support the growth of yeast cells under photosynthetic conditions.</description><subject>14/19</subject><subject>14/34</subject><subject>14/63</subject><subject>42/70</subject><subject>45/22</subject><subject>45/44</subject><subject>45/77</subject><subject>631/1647/1511</subject><subject>631/181/2475</subject><subject>631/326/88</subject><subject>631/553/552</subject><subject>Algae</subject><subject>Biological Evolution</subject><subject>Chimeras</subject><subject>Chloroplasts</subject><subject>Chloroplasts - genetics</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - genetics</subject><subject>Cytoplasm</subject><subject>Endosymbionts</subject><subject>Engineers</subject><subject>Eukaryotes</subject><subject>Evolution</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Photosynthesis</subject><subject>Photosynthesis - genetics</subject><subject>Saccharomyces cerevisiae</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Symbiosis - genetics</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtv1DAURi0EotXQP8ACRWLDJmBfP2JvkFDVQqVKbGBtOX4kHiXxYGeQ-u-bNKWvBd7Yss899vWH0HuCPxNM5ZfCCBNNjQFqUEqQunmFTgEzUpMG6Osn6xN0VsoeL4MqIhl7i04oZw3DQpyiy4upi5P3OU5dZfIcQ7TRDNWhT3MqN9Pc-znaaojB1yHlsVRzn9Ox6ys_uQUY25hKLO_Qm2CG4s_u5x36fXnx6_xHff3z-9X5t-vaCizmmpsADUhJwXrHlQDPvRMM2lYGMM4phq3CWFJpVRCByJY2QbrgnGSSCUV36GrzumT2-pDjaPKNTibqu42UO702YQevCeFKgqKeAmPYQwtBUGixZY0KTvDF9XVzHY7t6J3105zN8Ez6_GSKve7SX60wg9W8Q5_uBTn9Ofoy6zEW64fBTD4diwbBBWAiuFzQjy_QfTrmafmqleKUcqHwQsFG2ZxKyT48PIZgvaaut9T1krq-S103S9GHp208lPzLeAHoBpTDmrLPj3f_R3sLGBi4CQ</recordid><startdate>20220426</startdate><enddate>20220426</enddate><creator>Cournoyer, Jason E.</creator><creator>Altman, Sarah D.</creator><creator>Gao, Yang-le</creator><creator>Wallace, Catherine L.</creator><creator>Zhang, Dianwen</creator><creator>Lo, Guo-Hsuen</creator><creator>Haskin, Noah T.</creator><creator>Mehta, Angad P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2585-8268</orcidid><orcidid>https://orcid.org/0000-0002-2170-6737</orcidid><orcidid>https://orcid.org/0000-0002-9824-3953</orcidid><orcidid>https://orcid.org/0000-0002-0385-0110</orcidid></search><sort><creationdate>20220426</creationdate><title>Engineering artificial photosynthetic life-forms through endosymbiosis</title><author>Cournoyer, Jason E. ; Altman, Sarah D. ; Gao, Yang-le ; Wallace, Catherine L. ; Zhang, Dianwen ; Lo, Guo-Hsuen ; Haskin, Noah T. ; Mehta, Angad P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-5af2728832ced5962e5ed642bb8f2add940c900838c9f6f18b37f8dfdd8484693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>14/19</topic><topic>14/34</topic><topic>14/63</topic><topic>42/70</topic><topic>45/22</topic><topic>45/44</topic><topic>45/77</topic><topic>631/1647/1511</topic><topic>631/181/2475</topic><topic>631/326/88</topic><topic>631/553/552</topic><topic>Algae</topic><topic>Biological Evolution</topic><topic>Chimeras</topic><topic>Chloroplasts</topic><topic>Chloroplasts - genetics</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - genetics</topic><topic>Cytoplasm</topic><topic>Endosymbionts</topic><topic>Engineers</topic><topic>Eukaryotes</topic><topic>Evolution</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Photosynthesis</topic><topic>Photosynthesis - genetics</topic><topic>Saccharomyces cerevisiae</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Symbiosis - genetics</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cournoyer, Jason E.</creatorcontrib><creatorcontrib>Altman, Sarah D.</creatorcontrib><creatorcontrib>Gao, Yang-le</creatorcontrib><creatorcontrib>Wallace, Catherine L.</creatorcontrib><creatorcontrib>Zhang, Dianwen</creatorcontrib><creatorcontrib>Lo, Guo-Hsuen</creatorcontrib><creatorcontrib>Haskin, Noah T.</creatorcontrib><creatorcontrib>Mehta, Angad P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cournoyer, Jason E.</au><au>Altman, Sarah D.</au><au>Gao, Yang-le</au><au>Wallace, Catherine L.</au><au>Zhang, Dianwen</au><au>Lo, Guo-Hsuen</au><au>Haskin, Noah T.</au><au>Mehta, Angad P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering artificial photosynthetic life-forms through endosymbiosis</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-04-26</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>2254</spage><epage>2254</epage><pages>2254-2254</pages><artnum>2254</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The evolutionary origin of the photosynthetic eukaryotes drastically altered the evolution of complex lifeforms and impacted global ecology. The endosymbiotic theory suggests that photosynthetic eukaryotes evolved due to endosymbiosis between non-photosynthetic eukaryotic host cells and photosynthetic cyanobacterial or algal endosymbionts. The photosynthetic endosymbionts, propagating within the cytoplasm of the host cells, evolved, and eventually transformed into chloroplasts. Despite the fundamental importance of this evolutionary event, we have minimal understanding of this remarkable evolutionary transformation. Here, we design and engineer artificial, genetically tractable, photosynthetic endosymbiosis between photosynthetic cyanobacteria and budding yeasts. We engineer various mutants of model photosynthetic cyanobacteria as endosymbionts within yeast cells where, the engineered cyanobacteria perform bioenergetic functions to support the growth of yeast cells under defined photosynthetic conditions. We anticipate that these genetically tractable endosymbiotic platforms can be used for evolutionary studies, particularly related to organelle evolution, and also for synthetic biology applications. The endosymbiotic theory posits that chloroplasts in eukaryotes arise from bacterial endosymbionts. Here, the authors engineer the yeast/cyanobacteria chimeras and show that the engineered cyanobacteria perform chloroplast-like functions to support the growth of yeast cells under photosynthetic conditions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35474066</pmid><doi>10.1038/s41467-022-29961-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2585-8268</orcidid><orcidid>https://orcid.org/0000-0002-2170-6737</orcidid><orcidid>https://orcid.org/0000-0002-9824-3953</orcidid><orcidid>https://orcid.org/0000-0002-0385-0110</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2022-04, Vol.13 (1), p.2254-2254, Article 2254
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_11598293e32440e2b2f632b0c479fd65
source PubMed Central Free; Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 14/19
14/34
14/63
42/70
45/22
45/44
45/77
631/1647/1511
631/181/2475
631/326/88
631/553/552
Algae
Biological Evolution
Chimeras
Chloroplasts
Chloroplasts - genetics
Cyanobacteria
Cyanobacteria - genetics
Cytoplasm
Endosymbionts
Engineers
Eukaryotes
Evolution
Humanities and Social Sciences
multidisciplinary
Photosynthesis
Photosynthesis - genetics
Saccharomyces cerevisiae
Science
Science (multidisciplinary)
Symbiosis - genetics
Yeast
Yeasts
title Engineering artificial photosynthetic life-forms through endosymbiosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20artificial%20photosynthetic%20life-forms%20through%20endosymbiosis&rft.jtitle=Nature%20communications&rft.au=Cournoyer,%20Jason%20E.&rft.date=2022-04-26&rft.volume=13&rft.issue=1&rft.spage=2254&rft.epage=2254&rft.pages=2254-2254&rft.artnum=2254&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-29961-7&rft_dat=%3Cproquest_doaj_%3E2656201658%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-5af2728832ced5962e5ed642bb8f2add940c900838c9f6f18b37f8dfdd8484693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655335690&rft_id=info:pmid/35474066&rfr_iscdi=true