Loading…

Empowering Lower Limb Disorder Identification through PoseNet and Artificial Intelligence

A novel approach is presented in this study for the classification of lower limb disorders, with a specific emphasis on the knee, hip, and ankle. The research employs gait analysis and the extraction of PoseNet features from video data in order to effectively identify and categorize these disorders....

Full description

Saved in:
Bibliographic Details
Published in:Diagnostics (Basel) 2023-09, Vol.13 (18), p.2881
Main Authors: Siddiqui, Hafeez Ur Rehman, Saleem, Adil Ali, Raza, Muhammad Amjad, Villar, Santos Gracia, Lopez, Luis Alonso Dzul, Diez, Isabel de la Torre, Rustam, Furqan, Dudley, Sandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel approach is presented in this study for the classification of lower limb disorders, with a specific emphasis on the knee, hip, and ankle. The research employs gait analysis and the extraction of PoseNet features from video data in order to effectively identify and categorize these disorders. The PoseNet algorithm facilitates the extraction of key body joint movements and positions from videos in a non-invasive and user-friendly manner, thereby offering a comprehensive representation of lower limb movements. The features that are extracted are subsequently standardized and employed as inputs for a range of machine learning algorithms, such as Random Forest, Extra Tree Classifier, Multilayer Perceptron, Artificial Neural Networks, and Convolutional Neural Networks. The models undergo training and testing processes using a dataset consisting of 174 real patients and normal individuals collected at the Tehsil Headquarter Hospital Sadiq Abad. The evaluation of their performance is conducted through the utilization of K-fold cross-validation. The findings exhibit a notable level of accuracy and precision in the classification of various lower limb disorders. Notably, the Artificial Neural Networks model achieves the highest accuracy rate of 98.84%. The proposed methodology exhibits potential in enhancing the diagnosis and treatment planning of lower limb disorders. It presents a non-invasive and efficient method of analyzing gait patterns and identifying particular conditions.
ISSN:2075-4418
2075-4418
DOI:10.3390/diagnostics13182881