Loading…
Optimal Treatment of Prostate Cancer Based on State Constraint
As a new tumor therapeutic strategy, adaptive therapy involves utilizing the competition between cancer cells to suppress the growth of drug-resistant cells, maintaining a certain tumor burden. However, it is difficult to determine the appropriate time and drug dose. In this paper, we consider the c...
Saved in:
Published in: | Mathematics (Basel) 2023-09, Vol.11 (19), p.4025 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As a new tumor therapeutic strategy, adaptive therapy involves utilizing the competition between cancer cells to suppress the growth of drug-resistant cells, maintaining a certain tumor burden. However, it is difficult to determine the appropriate time and drug dose. In this paper, we consider the competition model between drug-sensitive cells and drug-resistant cells, propose the problem of drug concentration, and provide two state constraints: the upper limit of the maximum allowable drug concentration and the tumor burden. Using relevant theories, we propose the best treatment strategy. Through a numerical simulation and quantitative analysis, the effects of drug concentrations and different tumor burdens on treatments are studied, and the effects of cell-to-cell competitive advantage on cell changes are taken into account. The clinical dose titration method is further simulated; the results show that our therapeutic regimen can better suppress the growth of drug-resistant cells, control the tumor burden, limit drug toxicity, and extend the effective treatment time. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math11194025 |